PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m577.
Published online 2008 March 29. doi:  10.1107/S1600536808007174
PMCID: PMC2960968

Iodidotris(triphenyl­phosphine)copper(I) acetonitrile solvate

Abstract

The title compound, [CuI(C18H15P)3]·C2H3N, was obtained from the reaction of triphenyl­phosphine and copper(I) iodide in acetonitrile. The monomeric form of the complex has slightly distorted coordination of Cu by the I atom and three P atoms. The crystal structure is stabilized by C—H(...)π inter­actions between phenyl H atoms and phenyl rings. In addition, the complex mol­ecules exhibit C—H(...)N hydrogen bonds between phenyl H atoms and acetonitrile N atoms. The crystal used was an inversion twin, with nearly equal component populations of 0.522 (8) and 0.478 (8).

Related literature

For details of the crystal structures of organophosphine­copper(I) halide derivatives, see: Caulton et al. (1990 [triangle]); Bowmaker et al. (2000 [triangle]); Eller et al. (1977 [triangle]); Hamel et al. (2002 [triangle]); Hanna et al. (2005 [triangle]); Venkatraman et al. (2006 [triangle]); Barron et al. (1987 [triangle]); Kräuter & Newmüller (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m577-scheme1.jpg

Experimental

Crystal data

  • [CuI(C18H15P)3]·C2H3N
  • M r = 1018.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m577-efi1.jpg
  • a = 18.5726 (10) Å
  • b = 20.2631 (12) Å
  • c = 12.7839 (5) Å
  • V = 4811.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.23 mm−1
  • T = 115 (2) K
  • 0.30 × 0.25 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler
  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.709, T max = 0.818
  • 156685 measured reflections
  • 15969 independent reflections
  • 13488 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.068
  • S = 1.03
  • 15969 reflections
  • 561 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.66 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 7443 Friedel pairs
  • Flack parameter: 0.478 (8)

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007174/lx2043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007174/lx2043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Organophosphinecopper (I) halides have widely investigated system due to the formation of varying types of crystal structures (Caulton et al., 1990). Eller et al. (1977) used the organophosphinecopper (I) systems for the direct Cu–SO2 adduct formation. Recently Hanna et al. (2005) reported the structural and solid state NMR studies of the four coordinate copper (I) complexes with different cations except iodide. During our study on the interaction of heterocyclic thiosemicarbazones with copper (I) halides, we were able to isolate the title compound (1), Venkatraman et al., (2006).

The structure consists of CuI(PPh3)3 unit similar to the structure described by Eller et al. (1977) for CuI(PPh2Me)3. The asymmetric unit of (1) contains one formula unit of the complex with no crystallographically imposed symmetry (Fig.1), and one acetonitrile solvent molecule. The Cu atom is surrounded by three phosphorus atoms and the iodide atom in a distorted tetrahedral geometry. The three independent Cu—P distances are not grossly different (2.3421 (6), 2.3463 (6), and 2.3295 (7) Å) for P1, P2, and P3, respectively, and the Cu—I distance is 2.6843 (3) Å. The Cu—P bond lengths in compound (1) are similar to values recorded for a range of other [Cu-(PPh3)3X] complexes [Bowmaker et al., (2000)]. The three P—Cu—I angles are 104.75 (2), 113.66 (2), and 97.69 (2)°, for P1, P2, and P3, respectively, [average 105.2°], and sums to 316.0°. The wide range of P—Cu—P/I angles indicate an irregular tetrahedral structure.

The molecular packing (Fig. 2) is stabilized by CH2—H···π interactions between the hydrogen of phenyl group and the phenyl ring, with C9—H9···Cg1i and C40—H40···Cg2i separations of 2.94 Å (Fig. 2 & Table 1) (Cg1 and Cg2 are the centroids of C1—C6 and C7—C12 phenyl rings, respectively). Further stability comes from weak C—H···N1Sii hydrogen bond in Fig. 2 and Table 1. A l l symmetry codes as in Table 1.

Experimental

To a solution of copper (I) iodide (Aldrich; 0.190 g, 1 mmol) in acetonitrile (Aldrich; 50 ml) was added solid triphenylphosphine (Aldrich; 0.262 g, 2 mmol) in presence 0.5 ml HCl. The resulting mixture was stirred overnight. The clear solution was filtered and allowed to evaporate at room temperature in the presence of air. A colorless crystalline product suitable for X-ray diffraction was formed (yield ca 70%).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms. A torsional parameter was refined for the methyl group. Refinement of the Flack (1983) parameter, using 7443 Friedel pairs indicated that the crystal used was an inversion twin with approximately equal components.

Figures

Fig. 1.
Numbering scheme and ellipsoids at the 50% level. H atoms are not shown.
Fig. 2.
C—H···N and C—H···π interactions. Geometric parameters and symmetry operations are given in the Table 1.

Crystal data

[CuI(C18H15P)3]·C2H3NF000 = 2072
Mr = 1018.30Dx = 1.406 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8935 reflections
a = 18.573 (1) Åθ = 2.5–31.8º
b = 20.263 (1) ŵ = 1.23 mm1
c = 12.7839 (5) ÅT = 115 (2) K
V = 4811.2 (4) Å3Fragment, colorless
Z = 40.30 × 0.25 × 0.17 mm

Data collection

Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler)15969 independent reflections
Radiation source: fine-focus sealed tube13488 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.0000
T = 115(2) Kθmax = 31.8º
ω scans with κ offsetsθmin = 2.8º
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997)h = −27→27
Tmin = 0.709, Tmax = 0.818k = −29→30
156685 measured reflectionsl = −18→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + (0.0253P)2 + 3.4731P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.62 e Å3
15969 reflectionsΔρmin = −0.66 e Å3
561 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.478 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.217564 (7)0.266851 (6)0.441186 (16)0.02077 (3)
Cu0.240945 (12)0.397554 (11)0.44517 (3)0.01359 (5)
P10.13455 (3)0.44254 (3)0.51291 (5)0.01432 (10)
P20.33677 (3)0.42893 (3)0.55393 (5)0.01575 (11)
P30.25929 (3)0.41255 (3)0.26648 (4)0.01450 (10)
C10.13962 (12)0.45371 (12)0.65502 (18)0.0178 (4)
C20.12435 (12)0.51230 (12)0.70821 (19)0.0207 (5)
H20.11080.55060.67000.025*
C30.12884 (14)0.51494 (14)0.8170 (2)0.0273 (6)
H30.11850.55490.85270.033*
C40.14844 (14)0.45912 (16)0.8732 (2)0.0301 (6)
H40.15130.46090.94730.036*
C50.16373 (14)0.40114 (15)0.8213 (2)0.0283 (6)
H50.17730.36300.85980.034*
C60.15930 (14)0.39828 (13)0.7130 (2)0.0217 (5)
H60.16980.35810.67790.026*
C70.11119 (12)0.52434 (11)0.46264 (16)0.0175 (5)
C80.05030 (12)0.53500 (12)0.40169 (18)0.0191 (4)
H80.01730.49990.39000.023*
C90.03727 (13)0.59699 (13)0.3575 (2)0.0228 (5)
H9−0.00400.60360.31480.027*
C100.08404 (14)0.64869 (13)0.3755 (2)0.0249 (5)
H100.07490.69080.34550.030*
C110.14434 (11)0.63916 (10)0.4375 (3)0.0234 (4)
H110.17600.67500.45090.028*
C120.15866 (13)0.57737 (12)0.48005 (19)0.0205 (5)
H120.20070.57090.52110.025*
C130.04853 (12)0.39823 (11)0.50234 (19)0.0186 (4)
C140.03752 (13)0.35252 (12)0.4235 (2)0.0268 (6)
H140.07530.34230.37620.032*
C15−0.02950 (15)0.32139 (13)0.4135 (2)0.0336 (7)
H15−0.03720.29080.35840.040*
C16−0.08436 (15)0.33469 (14)0.4829 (3)0.0360 (7)
H16−0.12950.31300.47580.043*
C17−0.07363 (14)0.37963 (15)0.5628 (2)0.0337 (6)
H17−0.11120.38850.61130.040*
C18−0.00801 (13)0.41170 (14)0.5719 (2)0.0256 (5)
H18−0.00120.44320.62610.031*
C190.42750 (12)0.41851 (12)0.49989 (19)0.0196 (5)
C200.48602 (14)0.45677 (13)0.5321 (2)0.0300 (6)
H200.47920.49120.58160.036*
C210.55453 (14)0.44453 (15)0.4916 (3)0.0359 (7)
H210.59390.47150.51210.043*
C220.56534 (14)0.39352 (14)0.4220 (2)0.0314 (7)
H220.61210.38520.39500.038*
C230.50823 (15)0.35457 (15)0.3917 (2)0.0293 (6)
H230.51590.31910.34450.035*
C240.43900 (12)0.36709 (12)0.4301 (2)0.0230 (5)
H240.39980.34030.40840.028*
C250.33421 (12)0.51645 (11)0.59215 (19)0.0176 (4)
C260.29808 (12)0.53569 (12)0.6835 (2)0.0205 (5)
H260.27810.50320.72840.025*
C270.29136 (14)0.60257 (14)0.7087 (2)0.0266 (6)
H270.26680.61530.77060.032*
C280.32047 (15)0.65019 (13)0.6435 (2)0.0313 (6)
H280.31660.69550.66150.038*
C290.35523 (14)0.63185 (13)0.5523 (2)0.0297 (6)
H290.37430.66470.50700.036*
C300.36235 (13)0.56523 (12)0.5268 (2)0.0226 (5)
H300.38660.55290.46430.027*
C310.34799 (14)0.38716 (13)0.6806 (2)0.0192 (5)
C320.31740 (14)0.32518 (13)0.6941 (2)0.0232 (5)
H320.29180.30520.63810.028*
C330.32387 (16)0.29223 (14)0.7889 (2)0.0319 (6)
H330.30250.25000.79770.038*
C340.36150 (18)0.32092 (15)0.8706 (2)0.0377 (7)
H340.36490.29890.93610.045*
C350.39419 (18)0.38161 (14)0.8570 (2)0.0372 (7)
H350.42100.40080.91250.045*
C360.38781 (16)0.41478 (14)0.7618 (2)0.0302 (6)
H360.41070.45630.75240.036*
C370.18119 (13)0.38725 (13)0.18883 (19)0.0193 (5)
C380.18054 (15)0.33782 (12)0.1132 (2)0.0261 (5)
H380.22340.31430.09710.031*
C390.11603 (19)0.32291 (14)0.0607 (2)0.0367 (7)
H390.11550.28930.00890.044*
C400.05379 (17)0.35655 (16)0.0839 (3)0.0403 (8)
H400.01020.34530.04920.048*
C410.05425 (16)0.40674 (18)0.1574 (3)0.0413 (8)
H410.01140.43050.17260.050*
C420.11817 (14)0.42195 (16)0.2089 (2)0.0303 (6)
H420.11870.45670.25870.036*
C430.26948 (12)0.49703 (12)0.21873 (19)0.0182 (4)
C440.28124 (15)0.54660 (13)0.2903 (2)0.0262 (5)
H440.28490.53600.36250.031*
C450.28790 (17)0.61243 (14)0.2582 (3)0.0380 (7)
H450.29690.64620.30810.046*
C460.28136 (16)0.62768 (15)0.1545 (3)0.0367 (7)
H460.28580.67230.13250.044*
C470.26847 (14)0.57923 (15)0.0817 (2)0.0320 (6)
H470.26320.59060.01000.038*
C480.26316 (14)0.51345 (14)0.1126 (2)0.0253 (5)
H480.25530.47990.06200.030*
C490.33584 (14)0.36919 (13)0.20742 (19)0.0182 (5)
C500.33779 (14)0.30007 (13)0.2073 (2)0.0228 (5)
H500.29830.27590.23500.027*
C510.39711 (15)0.26645 (13)0.1669 (2)0.0260 (5)
H510.39760.21960.16630.031*
C520.45517 (15)0.30119 (15)0.1277 (2)0.0299 (6)
H520.49530.27830.09940.036*
C530.45462 (15)0.36930 (15)0.1297 (2)0.0299 (6)
H530.49500.39320.10420.036*
C540.39532 (13)0.40330 (13)0.1690 (2)0.0218 (5)
H540.39550.45020.16960.026*
N1S0.0790 (2)0.23273 (17)0.8365 (3)0.0715 (12)
C1S0.05774 (19)0.22818 (15)0.7540 (3)0.0409 (7)
C2S0.0311 (2)0.22160 (19)0.6481 (3)0.0474 (8)
H21S0.07140.22500.59890.071*
H22S−0.00380.25670.63380.071*
H23S0.00770.17860.64000.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.02420 (6)0.01553 (5)0.02259 (6)−0.00050 (5)−0.00066 (8)0.00298 (8)
Cu0.01321 (10)0.01381 (10)0.01374 (10)0.00034 (8)−0.00041 (14)0.00155 (13)
P10.0120 (2)0.0155 (2)0.0155 (2)−0.0003 (2)−0.0003 (2)0.0000 (2)
P20.0126 (2)0.0172 (3)0.0174 (3)−0.0001 (2)−0.0028 (2)0.0018 (2)
P30.0143 (2)0.0160 (2)0.0132 (2)0.0010 (2)0.0002 (2)0.0014 (2)
C10.0116 (10)0.0240 (11)0.0179 (11)−0.0007 (8)0.0006 (8)−0.0002 (9)
C20.0157 (10)0.0236 (12)0.0230 (12)−0.0015 (9)0.0021 (9)−0.0027 (9)
C30.0206 (12)0.0366 (15)0.0249 (13)−0.0027 (10)0.0038 (10)−0.0104 (11)
C40.0241 (13)0.0509 (18)0.0154 (12)−0.0049 (12)0.0013 (10)−0.0033 (11)
C50.0244 (13)0.0401 (15)0.0206 (12)0.0013 (11)−0.0017 (10)0.0055 (11)
C60.0206 (12)0.0228 (12)0.0218 (12)−0.0005 (10)−0.0002 (10)0.0006 (10)
C70.0169 (9)0.0173 (9)0.0185 (14)0.0015 (7)0.0008 (8)0.0002 (8)
C80.0177 (10)0.0211 (11)0.0185 (10)0.0006 (9)−0.0022 (8)−0.0024 (9)
C90.0200 (12)0.0283 (13)0.0203 (11)0.0055 (9)−0.0036 (9)0.0039 (10)
C100.0249 (12)0.0218 (12)0.0280 (13)0.0035 (10)0.0030 (10)0.0092 (10)
C110.0222 (9)0.0189 (9)0.0291 (11)−0.0037 (7)0.0009 (13)0.0022 (13)
C120.0157 (10)0.0226 (11)0.0232 (11)−0.0019 (9)−0.0031 (8)0.0029 (9)
C130.0150 (10)0.0178 (10)0.0230 (12)−0.0018 (8)−0.0027 (9)0.0026 (9)
C140.0248 (11)0.0211 (10)0.0346 (18)−0.0005 (9)−0.0096 (11)−0.0008 (10)
C150.0322 (14)0.0226 (12)0.0459 (19)−0.0054 (10)−0.0181 (12)0.0014 (11)
C160.0229 (14)0.0332 (14)0.0518 (18)−0.0130 (11)−0.0144 (12)0.0186 (13)
C170.0171 (12)0.0432 (17)0.0407 (16)−0.0053 (11)0.0000 (11)0.0120 (13)
C180.0177 (11)0.0324 (13)0.0267 (13)−0.0043 (10)−0.0006 (10)0.0006 (10)
C190.0142 (10)0.0236 (11)0.0209 (12)0.0029 (8)−0.0005 (8)0.0045 (9)
C200.0173 (11)0.0271 (13)0.0456 (17)0.0003 (10)−0.0036 (11)−0.0096 (12)
C210.0156 (11)0.0315 (14)0.061 (2)−0.0016 (10)−0.0024 (12)−0.0061 (13)
C220.0188 (11)0.0398 (14)0.0358 (19)0.0023 (10)0.0044 (10)−0.0006 (12)
C230.0265 (13)0.0368 (15)0.0247 (13)0.0042 (11)0.0009 (10)−0.0074 (11)
C240.0200 (10)0.0278 (11)0.0211 (13)−0.0018 (8)−0.0040 (10)−0.0030 (11)
C250.0142 (10)0.0173 (10)0.0215 (11)−0.0003 (8)−0.0056 (8)0.0005 (9)
C260.0177 (11)0.0200 (11)0.0240 (12)−0.0007 (8)−0.0041 (9)−0.0008 (9)
C270.0230 (13)0.0271 (14)0.0297 (14)0.0015 (10)−0.0045 (10)−0.0076 (11)
C280.0274 (13)0.0167 (12)0.0500 (18)0.0026 (10)−0.0110 (12)−0.0033 (11)
C290.0251 (13)0.0199 (12)0.0442 (16)−0.0019 (10)−0.0048 (11)0.0080 (11)
C300.0181 (11)0.0213 (11)0.0283 (13)−0.0004 (9)−0.0017 (9)0.0027 (10)
C310.0204 (12)0.0199 (12)0.0173 (11)0.0055 (9)−0.0024 (9)0.0031 (9)
C320.0242 (13)0.0236 (12)0.0218 (12)0.0003 (10)−0.0057 (10)0.0040 (10)
C330.0407 (16)0.0260 (13)0.0291 (14)−0.0029 (12)−0.0073 (12)0.0101 (11)
C340.0523 (19)0.0359 (16)0.0248 (14)0.0049 (14)−0.0123 (13)0.0097 (12)
C350.055 (2)0.0293 (15)0.0269 (14)0.0028 (13)−0.0216 (14)−0.0001 (11)
C360.0380 (15)0.0233 (13)0.0292 (14)−0.0009 (11)−0.0147 (13)0.0009 (11)
C370.0191 (12)0.0250 (12)0.0139 (11)−0.0024 (9)−0.0014 (9)0.0040 (9)
C380.0346 (14)0.0217 (12)0.0221 (12)−0.0049 (10)−0.0064 (11)0.0021 (10)
C390.0541 (19)0.0272 (14)0.0288 (15)−0.0167 (13)−0.0190 (13)0.0082 (11)
C400.0323 (15)0.0476 (18)0.0408 (17)−0.0187 (13)−0.0207 (13)0.0226 (15)
C410.0196 (13)0.062 (2)0.0425 (18)0.0019 (13)−0.0091 (12)0.0101 (16)
C420.0207 (12)0.0451 (17)0.0250 (13)0.0064 (12)−0.0041 (10)−0.0021 (12)
C430.0148 (10)0.0194 (11)0.0206 (11)0.0020 (8)0.0017 (8)0.0049 (9)
C440.0335 (14)0.0195 (11)0.0257 (13)−0.0020 (10)0.0028 (11)0.0022 (9)
C450.0489 (18)0.0183 (12)0.0467 (19)−0.0020 (12)0.0093 (15)0.0025 (12)
C460.0321 (15)0.0252 (15)0.053 (2)0.0040 (12)0.0123 (14)0.0181 (14)
C470.0240 (13)0.0397 (16)0.0324 (15)0.0034 (11)0.0027 (11)0.0208 (12)
C480.0224 (12)0.0327 (14)0.0209 (12)0.0016 (10)−0.0015 (9)0.0092 (10)
C490.0180 (11)0.0224 (12)0.0141 (11)0.0052 (9)0.0027 (9)0.0012 (9)
C500.0251 (12)0.0241 (13)0.0193 (12)0.0030 (10)0.0008 (9)0.0009 (10)
C510.0329 (14)0.0241 (12)0.0209 (12)0.0097 (11)0.0000 (10)0.0006 (10)
C520.0266 (13)0.0379 (15)0.0252 (13)0.0155 (11)0.0063 (10)0.0027 (11)
C530.0222 (12)0.0368 (15)0.0308 (14)0.0056 (11)0.0082 (10)0.0077 (12)
C540.0184 (11)0.0246 (12)0.0224 (12)0.0034 (9)0.0043 (10)0.0053 (10)
N1S0.106 (3)0.055 (2)0.053 (2)0.026 (2)−0.039 (2)−0.0197 (17)
C1S0.0500 (19)0.0309 (15)0.0418 (18)0.0090 (13)−0.0135 (15)−0.0073 (13)
C2S0.054 (2)0.052 (2)0.0363 (18)−0.0011 (16)−0.0160 (15)0.0016 (15)

Geometric parameters (Å, °)

Cu—I2.6843 (3)C26—C271.398 (4)
Cu—P12.3421 (6)C26—H260.9500
Cu—P22.3463 (6)C27—C281.385 (4)
Cu—P32.3295 (7)C27—H270.9500
P1—C71.830 (2)C28—C291.384 (4)
P1—C11.833 (2)C28—H280.9500
P1—C131.838 (2)C29—C301.395 (4)
P2—C191.833 (2)C29—H290.9500
P2—C311.839 (3)C30—H300.9500
P2—C251.840 (2)C31—C321.389 (4)
P3—C431.827 (2)C31—C361.392 (4)
P3—C371.831 (3)C32—C331.389 (4)
P3—C491.834 (3)C32—H320.9500
C1—C61.394 (3)C33—C341.385 (4)
C1—C21.397 (3)C33—H330.9500
C2—C31.395 (4)C34—C351.383 (4)
C2—H20.9500C34—H340.9500
C3—C41.388 (4)C35—C361.395 (4)
C3—H30.9500C35—H350.9500
C4—C51.378 (4)C36—H360.9500
C4—H40.9500C37—C421.389 (4)
C5—C61.389 (4)C37—C381.392 (4)
C5—H50.9500C38—C391.406 (4)
C6—H60.9500C38—H380.9500
C7—C81.390 (3)C39—C401.374 (5)
C7—C121.408 (3)C39—H390.9500
C8—C91.399 (3)C40—C411.385 (5)
C8—H80.9500C40—H400.9500
C9—C101.380 (4)C41—C421.392 (4)
C9—H90.9500C41—H410.9500
C10—C111.385 (4)C42—H420.9500
C10—H100.9500C43—C441.376 (4)
C11—C121.391 (3)C43—C481.402 (3)
C11—H110.9500C44—C451.401 (4)
C12—H120.9500C44—H440.9500
C13—C141.384 (3)C45—C461.367 (5)
C13—C181.403 (4)C45—H450.9500
C14—C151.401 (3)C46—C471.374 (5)
C14—H140.9500C46—H460.9500
C15—C161.377 (4)C47—C481.394 (4)
C15—H150.9500C47—H470.9500
C16—C171.383 (5)C48—H480.9500
C16—H160.9500C49—C541.393 (4)
C17—C181.386 (4)C49—C501.401 (4)
C17—H170.9500C50—C511.395 (4)
C18—H180.9500C50—H500.9500
C19—C241.388 (4)C51—C521.382 (4)
C19—C201.397 (3)C51—H510.9500
C20—C211.396 (4)C52—C531.380 (4)
C20—H200.9500C52—H520.9500
C21—C221.378 (4)C53—C541.393 (4)
C21—H210.9500C53—H530.9500
C22—C231.378 (4)C54—H540.9500
C22—H220.9500N1S—C1S1.130 (5)
C23—C241.400 (3)C1S—C2S1.447 (5)
C23—H230.9500C2S—H21S0.9800
C24—H240.9500C2S—H22S0.9800
C25—C301.396 (3)C2S—H23S0.9800
C25—C261.402 (3)
P1—Cu—P2108.39 (2)C30—C25—P2120.9 (2)
P3—Cu—P1115.80 (2)C26—C25—P2120.1 (2)
P3—Cu—P2115.77 (2)C27—C26—C25120.3 (2)
P1—Cu—I104.75 (2)C27—C26—H26119.9
P2—Cu—I113.66 (2)C25—C26—H26119.9
P3—Cu—I97.69 (2)C28—C27—C26120.1 (3)
C7—P1—C1104.4 (1)C28—C27—H27119.9
C7—P1—C13102.2 (1)C26—C27—H27119.9
C1—P1—C13100.2 (1)C29—C28—C27120.1 (3)
C7—P1—Cu115.01 (7)C29—C28—H28119.9
C1—P1—Cu111.79 (8)C27—C28—H28119.9
C13—P1—Cu121.07 (8)C28—C29—C30120.1 (3)
C19—P2—C31100.1 (1)C28—C29—H29120.0
C19—P2—C25103.6 (1)C30—C29—H29120.0
C31—P2—C25102.3 (1)C29—C30—C25120.7 (2)
C19—P2—Cu116.27 (8)C29—C30—H30119.7
C31—P2—Cu118.89 (9)C25—C30—H30119.7
C25—P2—Cu113.51 (7)C32—C31—C36119.2 (2)
C43—P3—C3799.4 (1)C32—C31—P2118.7 (2)
C43—P3—C49103.4 (1)C36—C31—P2122.1 (2)
C37—P3—C49104.9 (1)C33—C32—C31120.5 (3)
C43—P3—Cu117.71 (8)C33—C32—H32119.7
C37—P3—Cu112.29 (8)C31—C32—H32119.7
C49—P3—Cu117.04 (8)C34—C33—C32120.0 (3)
C6—C1—C2118.6 (2)C34—C33—H33120.0
C6—C1—P1116.1 (2)C32—C33—H33120.0
C2—C1—P1125.2 (2)C35—C34—C33120.0 (3)
C3—C2—C1120.4 (2)C35—C34—H34120.0
C3—C2—H2119.8C33—C34—H34120.0
C1—C2—H2119.8C34—C35—C36120.1 (3)
C4—C3—C2120.0 (2)C34—C35—H35120.0
C4—C3—H3120.0C36—C35—H35120.0
C2—C3—H3120.0C31—C36—C35120.1 (3)
C5—C4—C3120.0 (2)C31—C36—H36119.9
C5—C4—H4120.0C35—C36—H36119.9
C3—C4—H4120.0C42—C37—C38119.0 (2)
C4—C5—C6120.2 (3)C42—C37—P3115.2 (2)
C4—C5—H5119.9C38—C37—P3125.8 (2)
C6—C5—H5119.9C37—C38—C39119.5 (3)
C5—C6—C1120.8 (2)C37—C38—H38120.2
C5—C6—H6119.6C39—C38—H38120.2
C1—C6—H6119.6C40—C39—C38120.5 (3)
C8—C7—C12118.7 (2)C40—C39—H39119.7
C8—C7—P1122.0 (2)C38—C39—H39119.7
C12—C7—P1119.2 (2)C39—C40—C41120.3 (3)
C7—C8—C9120.4 (2)C39—C40—H40119.8
C7—C8—H8119.8C41—C40—H40119.8
C9—C8—H8119.8C40—C41—C42119.3 (3)
C10—C9—C8120.3 (2)C40—C41—H41120.4
C10—C9—H9119.8C42—C41—H41120.4
C8—C9—H9119.8C37—C42—C41121.3 (3)
C9—C10—C11119.9 (2)C37—C42—H42119.4
C9—C10—H10120.0C41—C42—H42119.4
C11—C10—H10120.0C44—C43—C48118.9 (2)
C10—C11—C12120.3 (2)C44—C43—P3118.6 (2)
C10—C11—H11119.9C48—C43—P3122.5 (2)
C12—C11—H11119.9C43—C44—C45121.0 (3)
C11—C12—C7120.4 (2)C43—C44—H44119.5
C11—C12—H12119.8C45—C44—H44119.5
C7—C12—H12119.8C46—C45—C44119.4 (3)
C14—C13—C18118.8 (2)C46—C45—H45120.3
C14—C13—P1120.6 (2)C44—C45—H45120.3
C18—C13—P1120.6 (2)C45—C46—C47120.7 (3)
C13—C14—C15119.9 (3)C45—C46—H46119.6
C13—C14—H14120.1C47—C46—H46119.6
C15—C14—H14120.1C46—C47—C48120.2 (3)
C16—C15—C14120.7 (3)C46—C47—H47119.9
C16—C15—H15119.6C48—C47—H47119.9
C14—C15—H15119.6C47—C48—C43119.7 (3)
C15—C16—C17119.8 (2)C47—C48—H48120.1
C15—C16—H16120.1C43—C48—H48120.1
C17—C16—H16120.1C54—C49—C50118.4 (2)
C16—C17—C18119.9 (3)C54—C49—P3121.5 (2)
C16—C17—H17120.1C50—C49—P3120.0 (2)
C18—C17—H17120.1C51—C50—C49120.6 (2)
C17—C18—C13120.9 (3)C51—C50—H50119.7
C17—C18—H18119.6C49—C50—H50119.7
C13—C18—H18119.6C52—C51—C50120.1 (2)
C24—C19—C20119.1 (2)C52—C51—H51119.9
C24—C19—P2118.0 (2)C50—C51—H51119.9
C20—C19—P2122.7 (2)C53—C52—C51119.8 (2)
C21—C20—C19120.1 (3)C53—C52—H52120.1
C21—C20—H20120.0C51—C52—H52120.1
C19—C20—H20120.0C52—C53—C54120.5 (2)
C22—C21—C20120.4 (3)C52—C53—H53119.8
C22—C21—H21119.8C54—C53—H53119.8
C20—C21—H21119.8C49—C54—C53120.6 (2)
C23—C22—C21119.9 (2)C49—C54—H54119.7
C23—C22—H22120.0C53—C54—H54119.7
C21—C22—H22120.0N1S—C1S—C2S179.3 (4)
C22—C23—C24120.3 (2)C1S—C2S—H21S109.5
C22—C23—H23119.8C1S—C2S—H22S109.5
C24—C23—H23119.8H21S—C2S—H22S109.5
C19—C24—C23120.2 (2)C1S—C2S—H23S109.5
C19—C24—H24119.9H21S—C2S—H23S109.5
C23—C24—H24119.9H22S—C2S—H23S109.5
C30—C25—C26118.7 (2)
P3—Cu—P1—C7−41.42 (8)C19—C20—C21—C22−1.9 (5)
P2—Cu—P1—C790.62 (8)C20—C21—C22—C230.4 (5)
I—Cu—P1—C7−147.73 (8)C21—C22—C23—C240.9 (4)
P3—Cu—P1—C1−160.21 (9)C20—C19—C24—C23−0.9 (4)
P2—Cu—P1—C1−28.18 (9)P2—C19—C24—C23−176.1 (2)
I—Cu—P1—C193.47 (9)C22—C23—C24—C19−0.6 (4)
P3—Cu—P1—C1382.11 (9)C19—P2—C25—C3043.1 (2)
P2—Cu—P1—C13−145.85 (9)C31—P2—C25—C30146.78 (19)
I—Cu—P1—C13−24.20 (9)Cu—P2—C25—C30−83.89 (19)
P3—Cu—P2—C19−32.45 (9)C19—P2—C25—C26−142.59 (19)
P1—Cu—P2—C19−164.50 (9)C31—P2—C25—C26−38.9 (2)
I—Cu—P2—C1979.49 (9)Cu—P2—C25—C2690.42 (19)
P3—Cu—P2—C31−152.11 (10)C30—C25—C26—C27−0.8 (3)
P1—Cu—P2—C3175.84 (10)P2—C25—C26—C27−175.18 (18)
I—Cu—P2—C31−40.17 (10)C25—C26—C27—C28−0.1 (4)
P3—Cu—P2—C2587.57 (9)C26—C27—C28—C291.1 (4)
P1—Cu—P2—C25−44.48 (9)C27—C28—C29—C30−1.3 (4)
I—Cu—P2—C25−160.49 (8)C28—C29—C30—C250.5 (4)
P1—Cu—P3—C4363.46 (9)C26—C25—C30—C290.6 (3)
P2—Cu—P3—C43−65.03 (9)P2—C25—C30—C29174.95 (19)
I—Cu—P3—C43173.98 (8)C19—P2—C31—C32−105.8 (2)
P1—Cu—P3—C37−51.02 (10)C25—P2—C31—C32147.8 (2)
P2—Cu—P3—C37−179.52 (9)Cu—P2—C31—C3221.9 (2)
I—Cu—P3—C3759.50 (9)C19—P2—C31—C3672.3 (3)
P1—Cu—P3—C49−172.41 (10)C25—P2—C31—C36−34.1 (3)
P2—Cu—P3—C4959.10 (10)Cu—P2—C31—C36−160.0 (2)
I—Cu—P3—C49−61.89 (10)C36—C31—C32—C332.6 (4)
C7—P1—C1—C6−177.91 (18)P2—C31—C32—C33−179.3 (2)
C13—P1—C1—C676.6 (2)C31—C32—C33—C34−0.5 (5)
Cu—P1—C1—C6−53.0 (2)C32—C33—C34—C35−1.6 (5)
C7—P1—C1—C23.1 (2)C33—C34—C35—C361.6 (5)
C13—P1—C1—C2−102.4 (2)C32—C31—C36—C35−2.7 (4)
Cu—P1—C1—C2128.07 (19)P2—C31—C36—C35179.3 (2)
C6—C1—C2—C30.0 (3)C34—C35—C36—C310.6 (5)
P1—C1—C2—C3178.94 (19)C43—P3—C37—C42−63.8 (2)
C1—C2—C3—C4−0.1 (4)C49—P3—C37—C42−170.4 (2)
C2—C3—C4—C50.3 (4)Cu—P3—C37—C4261.5 (2)
C3—C4—C5—C6−0.3 (4)C43—P3—C37—C38115.7 (2)
C4—C5—C6—C10.2 (4)C49—P3—C37—C389.1 (3)
C2—C1—C6—C50.0 (4)Cu—P3—C37—C38−119.0 (2)
P1—C1—C6—C5−179.1 (2)C42—C37—C38—C39−1.6 (4)
C1—P1—C7—C8−122.92 (19)P3—C37—C38—C39178.9 (2)
C13—P1—C7—C8−18.9 (2)C37—C38—C39—C40−0.2 (4)
Cu—P1—C7—C8114.23 (18)C38—C39—C40—C411.6 (4)
C1—P1—C7—C1261.5 (2)C39—C40—C41—C42−1.1 (5)
C13—P1—C7—C12165.52 (19)C38—C37—C42—C412.2 (4)
Cu—P1—C7—C12−61.40 (19)P3—C37—C42—C41−178.3 (2)
C12—C7—C8—C90.9 (3)C40—C41—C42—C37−0.8 (5)
P1—C7—C8—C9−174.72 (18)C37—P3—C43—C44135.0 (2)
C7—C8—C9—C10−1.3 (4)C49—P3—C43—C44−117.1 (2)
C8—C9—C10—C110.2 (4)Cu—P3—C43—C4413.6 (2)
C9—C10—C11—C121.2 (4)C37—P3—C43—C48−42.6 (2)
C10—C11—C12—C7−1.5 (4)C49—P3—C43—C4865.2 (2)
C8—C7—C12—C110.4 (4)Cu—P3—C43—C48−164.05 (17)
P1—C7—C12—C11176.2 (2)C48—C43—C44—C45−0.9 (4)
C7—P1—C13—C14104.3 (2)P3—C43—C44—C45−178.6 (2)
C1—P1—C13—C14−148.4 (2)C43—C44—C45—C461.1 (4)
Cu—P1—C13—C14−25.1 (2)C44—C45—C46—C47−0.1 (5)
C7—P1—C13—C18−73.6 (2)C45—C46—C47—C48−1.2 (4)
C1—P1—C13—C1833.7 (2)C46—C47—C48—C431.4 (4)
Cu—P1—C13—C18157.04 (17)C44—C43—C48—C47−0.3 (4)
C18—C13—C14—C150.9 (4)P3—C43—C48—C47177.28 (19)
P1—C13—C14—C15−177.04 (19)C43—P3—C49—C5418.8 (2)
C13—C14—C15—C16−1.4 (4)C37—P3—C49—C54122.4 (2)
C14—C15—C16—C170.5 (4)Cu—P3—C49—C54−112.4 (2)
C15—C16—C17—C180.8 (4)C43—P3—C49—C50−166.1 (2)
C16—C17—C18—C13−1.3 (4)C37—P3—C49—C50−62.4 (2)
C14—C13—C18—C170.5 (4)Cu—P3—C49—C5062.8 (2)
P1—C13—C18—C17178.4 (2)C54—C49—C50—C51−1.8 (4)
C31—P2—C19—C2498.0 (2)P3—C49—C50—C51−177.1 (2)
C25—P2—C19—C24−156.6 (2)C49—C50—C51—C520.9 (4)
Cu—P2—C19—C24−31.4 (2)C50—C51—C52—C530.7 (4)
C31—P2—C19—C20−77.0 (2)C51—C52—C53—C54−1.4 (4)
C25—P2—C19—C2028.4 (2)C50—C49—C54—C531.2 (4)
Cu—P2—C19—C20153.61 (19)P3—C49—C54—C53176.4 (2)
C24—C19—C20—C212.1 (4)C52—C53—C54—C490.4 (4)
P2—C19—C20—C21177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.943.732141
C40—H40···Cg2i0.952.943.696137
C39—H39···N1Sii0.952.583.468 (4)157

Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2043).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.
  • Bowmaker, G. A., Effendy, J. D. K., Hanna, J. V., Healy, P. C., Reid, J. C., Clifton, E. F. R. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 753–761.
  • Caulton, K. G., Davies, G. & Holt, E. M. (1990). Polyhedron, 9, 2319–2351.
  • Eller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem.16, 2454–2462.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hamel, A., Schier, A. & Schmidbaur, H. Z. (2002). Naturforsch. Teil B, 57, 877–880.
  • Hanna, J. V., Boyd, S. E., Healy, P. C., Bowmaker, G. A., Skelton, B. W. & White, A. H. (2005). J. Chem. Soc. Dalton Trans. pp. 2547–2556. [PubMed]
  • Kräuter, T. & Newmüller, B. (1996). Polyhedron, 15, 2851–2857.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Venkatraman, R., Sitole, L., Wilson, M. R. & Fronczek, F. R. (2006). Acta Cryst. E62, m2992–m2994.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography