PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o720.
Published online 2008 March 14. doi:  10.1107/S160053680800682X
PMCID: PMC2960962

4-Bromo-2-((E)-{4-[(3,4-dimethyl­isoxazol-5-yl)sulfamo­yl]phen­yl}iminio­meth­yl)phenolate

Abstract

The title compound, C18H16BrN3O4S, is a Schiff base ligand of 5-bromo­salicylaldehyde and sulfisoxazole [or N-(3,4-dimethyl-5-isoxazol)sulfanilamide]. The present structure is a zwitterion and is a more precise reinterpretation of the structure which was originally reported by Hämäläinen, Lehtinen & Turpeinen [Arch. Pharm. (1986), 319, 415–420]. The two aromatic rings which make π–π inter­actions [centroid–centroid distance 3.7538 (18) Å] through intermolecular interactions. There is also a C—Br(...)π inter­action [3.6333 (15) Å] with the heterocyclic ring. An intra­molecular N—H(...)O hydrogen bond also exists. Dimers are formed due to inter­molecular N—H(...)O hydrogen bonding. Inter­molecular C—H(...)O hydrogen bonding links a methyl C atom and the phenolate O atom. The dimers are linked by C—H(...)N hydrogen bonds, where the C atom is from the Schiff base group and the N atom is of five-membered heterocyclic ring.

Related literature

For related literature, see: Chohan et al. (2008 [triangle]); Hämäläinen et al. (1986 [triangle]); Shad et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o720-scheme1.jpg

Experimental

Crystal data

  • C18H16BrN3O4S
  • M r = 450.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o720-efi1.jpg
  • a = 15.3846 (10) Å
  • b = 7.2235 (5) Å
  • c = 16.5520 (11) Å
  • β = 93.201 (4)°
  • V = 1836.6 (2) Å3
  • Z = 4
  • Mo Kα radiation radiation
  • μ = 2.38 mm−1
  • T = 296 (2) K
  • 0.18 × 0.14 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.685, T max = 0.793
  • 18874 measured reflections
  • 3955 independent reflections
  • 2704 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.115
  • S = 1.00
  • 3955 reflections
  • 252 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800682X/bq2069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800682X/bq2069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are a class of compounds, which have been found to possess a wide range of medicinal properties. In continuation of synthesizing Schiff base ligands of substituted halogen salicylaldehyde and various sulfonamides (Chohan et al., 2008, Shad et al., 2008), We report the refinement of (5-Bromosalicy1idene)-N-(3,4-dimethyl-5-isoxazolyl)sulfanilamide (Hämäläinen et al., 1986).

During the refinement of 4-Chloro-2-[(E)-({4-[(3,4-dimethylisoxazol-5-yl) sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2008) prepared from 5-chlorosalicylaldehyde and sulfisoxazole: [N-(3,4-dimethyl-5-isoxazol) sulfanilamide], it was observed that H-atom of hydroxy group shifts to N-atom of Schiff base moiety. To see the effect of sulfisoxazole on 5-Bromosalicylaldehyde, the title compound (I) has been prepared. The X-ray structure analysis clearly shows that again a zwitterion is formed due to the reaction of 5-Bromosalicylaldehyde and sulfisoxazole. The values of bond lengths and bond angles are similar to the chloro isomer and also similar to the reported by Hämäläinen et al., 1986. There exist π interaction at a distance of 3.6333 (15) Å C5—Br1···CgAi [symmetry code i = x - 1/2, -y + 1/2, z - 1/2], where CgA is the center of gravity of the (A) five-membered heterocyclic ring containing O4. The π - π interaction also exists between the aromatic rings (B) and (C), containing C10 and C3 respectively. The distance between the centroids of neighbouring rings have value of 3.7538 (18) Å, CgB···CgCii [symmetry code ii = x, y - 1, z], here CgB and CgC represent the center of gravity of ring (B) and ring (C) respectively. The dihedral angles between the rings A/B, A/C, B/C have values of 43.30 (18)°, 44.30 (18)° and 5.56 (15)° respectively. The molecules form dimers through H-bonding between N2—H2···O1iii [symmetry code iii = -x + 1, -y + 1, -z + 1]. These dimers are linked to each other by C7—H7···N3iv [symmetry code iv = -x + 1/2, y - 1/2, -z + 3/2] and form a three-dimensional polymeric network. The intermolecular H-bond [C—H···O] between methyl C-atom and O-atom of aromatic ring with Bromom group. The detail of H-bonding is given in Table 1.

Experimental

Sulfisoxazole (0.5346 g, 2 mmol) in ethanol (20 ml) was mixed with ethanolic solution (10 ml) of 5-Bromosalicylaldehyde (0.402 g, 2 mmol). After refluxing for 3 h, the solution turned orange red. The solution was cooled to room temperature, filtered and volume reduced to about one-third using rotary evaporator. It was then allowed to stand for 10 days and obtained crystals of title compound. m.p; 481 K.

Refinement

The coordinates of H-atoms attached to N-atoms were refined. H-atoms were positioned geometrically, with C—H = 0.93 Å for aromatic like, 0.96 Å for methyl and constrained to ride on their parent atoms. The Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C18H16BrN3O4S, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular ...
Fig. 2.
The interaction diagram of (I) (Spek, 2003) showing the intramolecular and intermolecular hydrogen bonding which leads to dimers and a three-dimensional polymeric network.

Crystal data

C18H16BrN3O4SF000 = 912
Mr = 450.31Dx = 1.629 Mg m3
Monoclinic, P21/nMelting point: 481 K
Hall symbol: -P 2ynMo Kα radiation radiation λ = 0.71073 Å
a = 15.3846 (10) ÅCell parameters from 2704 reflections
b = 7.2235 (5) Åθ = 1.8–27.0º
c = 16.5520 (11) ŵ = 2.38 mm1
β = 93.201 (4)ºT = 296 (2) K
V = 1836.6 (2) Å3Prismatic, red
Z = 40.18 × 0.14 × 0.10 mm

Data collection

Bruker KappaAPEXII CCD diffractometer3955 independent reflections
Radiation source: fine-focus sealed tube2704 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
Detector resolution: 7.40 pixels mm-1θmax = 27.0º
T = 296(2) Kθmin = 1.8º
ω scansh = −19→19
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −9→9
Tmin = 0.685, Tmax = 0.793l = −21→18
18874 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.00.057P)2 + 0.7324P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3955 reflectionsΔρmax = 0.46 e Å3
252 parametersΔρmin = −0.62 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.11987 (2)−0.44715 (5)0.41651 (3)0.05783 (16)
S10.39184 (6)0.99341 (12)0.67050 (5)0.0440 (2)
O10.38204 (15)0.1394 (3)0.34949 (14)0.0491 (6)
O20.4329 (2)1.1298 (3)0.62307 (15)0.0647 (7)
O30.31683 (17)1.0380 (4)0.71321 (17)0.0645 (8)
O40.40342 (15)0.8167 (3)0.85228 (14)0.0514 (6)
N10.32829 (17)0.3238 (4)0.47030 (16)0.0365 (6)
H10.364 (2)0.300 (5)0.439 (2)0.044*
N20.46806 (18)0.9255 (4)0.73775 (17)0.0380 (6)
H20.510 (2)0.918 (5)0.717 (2)0.046*
N30.3987 (2)0.6529 (5)0.89824 (19)0.0669 (10)
C10.26586 (19)0.0371 (4)0.42687 (18)0.0352 (7)
C20.3239 (2)0.0154 (4)0.36301 (19)0.0382 (7)
C30.3146 (2)−0.1448 (5)0.3150 (2)0.0466 (8)
H30.3501−0.16040.27180.056*
C40.2547 (2)−0.2782 (5)0.33041 (19)0.0449 (8)
H40.2503−0.38390.29840.054*
C50.1997 (2)−0.2558 (5)0.3945 (2)0.0416 (7)
C60.2043 (2)−0.1014 (5)0.4411 (2)0.0407 (8)
H60.1666−0.08710.48260.049*
C70.2714 (2)0.1925 (4)0.47838 (19)0.0383 (7)
H70.23300.20170.51970.046*
C80.34005 (19)0.4812 (4)0.52001 (18)0.0329 (7)
C90.39958 (18)0.6121 (4)0.49609 (18)0.0349 (7)
H90.42950.59260.44950.042*
C100.41460 (19)0.7704 (4)0.54089 (18)0.0375 (7)
H100.45490.85770.52550.045*
C110.3682 (2)0.7976 (4)0.60991 (18)0.0361 (7)
C120.3092 (2)0.6689 (5)0.63357 (19)0.0414 (8)
H120.27860.68930.67970.050*
C130.2952 (2)0.5096 (5)0.5892 (2)0.0411 (8)
H130.25580.42140.60560.049*
C140.45153 (18)0.7779 (4)0.78862 (17)0.0346 (7)
C150.4783 (2)0.6014 (5)0.7904 (2)0.0410 (8)
C160.4434 (3)0.5296 (5)0.8609 (2)0.0572 (10)
C170.5315 (3)0.5017 (5)0.7328 (3)0.0692 (13)
H17A0.50860.37920.72420.104*
H17B0.59060.49380.75460.104*
H17C0.53000.56720.68230.104*
C180.4540 (4)0.3344 (6)0.8916 (3)0.0978 (18)
H18A0.39960.29140.91030.147*
H18B0.49760.33140.93540.147*
H18C0.47140.25590.84860.147*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0474 (2)0.0454 (2)0.0799 (3)−0.01217 (17)−0.00429 (19)−0.00371 (19)
S10.0541 (5)0.0327 (4)0.0448 (5)0.0070 (4)−0.0016 (4)−0.0070 (4)
O10.0517 (13)0.0490 (14)0.0487 (13)−0.0079 (12)0.0226 (11)−0.0059 (11)
O20.105 (2)0.0305 (13)0.0578 (16)−0.0076 (14)−0.0076 (15)0.0067 (12)
O30.0561 (15)0.0677 (18)0.0693 (17)0.0268 (13)−0.0017 (13)−0.0284 (14)
O40.0569 (14)0.0549 (15)0.0449 (13)0.0158 (12)0.0248 (12)−0.0003 (12)
N10.0342 (14)0.0397 (15)0.0362 (15)−0.0020 (12)0.0080 (11)−0.0048 (12)
N20.0384 (14)0.0388 (15)0.0372 (15)−0.0013 (12)0.0068 (12)−0.0050 (12)
N30.083 (2)0.062 (2)0.059 (2)0.0189 (19)0.0412 (18)0.0139 (17)
C10.0343 (15)0.0365 (17)0.0350 (17)−0.0005 (13)0.0044 (13)−0.0045 (14)
C20.0399 (17)0.0392 (18)0.0357 (17)0.0051 (14)0.0052 (14)−0.0004 (14)
C30.058 (2)0.046 (2)0.0358 (18)0.0073 (17)0.0095 (16)−0.0042 (16)
C40.056 (2)0.0372 (18)0.0403 (19)0.0041 (16)−0.0072 (16)−0.0082 (15)
C50.0401 (17)0.0379 (18)0.0461 (19)−0.0026 (14)−0.0036 (15)0.0010 (15)
C60.0347 (16)0.0437 (19)0.0440 (19)−0.0029 (14)0.0059 (14)−0.0044 (15)
C70.0359 (16)0.0411 (18)0.0384 (17)−0.0021 (14)0.0066 (14)−0.0043 (15)
C80.0318 (15)0.0353 (16)0.0315 (16)−0.0006 (12)0.0007 (12)−0.0019 (13)
C90.0348 (16)0.0408 (17)0.0294 (16)−0.0005 (13)0.0057 (13)0.0017 (14)
C100.0394 (16)0.0372 (17)0.0363 (17)−0.0053 (14)0.0058 (14)0.0014 (14)
C110.0398 (16)0.0340 (17)0.0338 (17)0.0032 (13)−0.0032 (13)−0.0038 (13)
C120.0407 (17)0.048 (2)0.0365 (17)−0.0022 (15)0.0117 (14)−0.0057 (15)
C130.0414 (17)0.0431 (18)0.0399 (18)−0.0120 (14)0.0126 (15)−0.0035 (15)
C140.0329 (15)0.0420 (18)0.0294 (15)0.0027 (13)0.0068 (13)−0.0095 (14)
C150.0448 (17)0.0390 (18)0.0405 (18)−0.0009 (14)0.0132 (15)−0.0056 (14)
C160.067 (2)0.049 (2)0.058 (2)0.0105 (19)0.025 (2)0.0077 (18)
C170.096 (3)0.041 (2)0.076 (3)0.005 (2)0.048 (3)−0.008 (2)
C180.140 (5)0.066 (3)0.094 (3)0.028 (3)0.065 (3)0.029 (3)

Geometric parameters (Å, °)

Br1—C51.898 (3)C6—H60.9300
S1—O31.424 (3)C7—H70.9300
S1—O21.429 (3)C8—C131.385 (4)
S1—N21.646 (3)C8—C91.389 (4)
S1—C111.760 (3)C9—C101.375 (4)
O1—C21.294 (4)C9—H90.9300
O4—C141.350 (3)C10—C111.395 (4)
O4—N31.411 (4)C10—H100.9300
N1—C71.302 (4)C11—C121.371 (4)
N1—C81.409 (4)C12—C131.376 (5)
N1—H10.80 (3)C12—H120.9300
N2—C141.391 (4)C13—H130.9300
N2—H20.75 (4)C14—C151.339 (4)
N3—C161.302 (5)C15—C161.410 (5)
C1—C61.406 (4)C15—C171.478 (5)
C1—C71.409 (4)C16—C181.504 (6)
C1—C21.429 (4)C17—H17A0.9600
C2—C31.406 (5)C17—H17B0.9600
C3—C41.368 (5)C17—H17C0.9600
C3—H30.9300C18—H18A0.9600
C4—C51.402 (5)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.355 (5)
O3—S1—O2120.84 (18)C9—C8—N1116.6 (3)
O3—S1—N2107.36 (15)C10—C9—C8120.4 (3)
O2—S1—N2104.87 (16)C10—C9—H9119.8
O3—S1—C11108.49 (16)C8—C9—H9119.8
O2—S1—C11108.95 (16)C9—C10—C11118.7 (3)
N2—S1—C11105.22 (14)C9—C10—H10120.7
C14—O4—N3107.1 (2)C11—C10—H10120.7
C7—N1—C8126.3 (3)C12—C11—C10121.1 (3)
C7—N1—H1114 (3)C12—C11—S1120.1 (2)
C8—N1—H1119 (3)C10—C11—S1118.7 (2)
C14—N2—S1119.4 (2)C11—C12—C13120.0 (3)
C14—N2—H2114 (3)C11—C12—H12120.0
S1—N2—H2108 (3)C13—C12—H12120.0
C16—N3—O4105.9 (3)C12—C13—C8119.7 (3)
C6—C1—C7119.0 (3)C12—C13—H13120.2
C6—C1—C2119.9 (3)C8—C13—H13120.2
C7—C1—C2121.0 (3)C15—C14—O4111.2 (3)
O1—C2—C3121.4 (3)C15—C14—N2132.6 (3)
O1—C2—C1121.2 (3)O4—C14—N2116.1 (3)
C3—C2—C1117.4 (3)C14—C15—C16103.8 (3)
C4—C3—C2121.5 (3)C14—C15—C17129.1 (3)
C4—C3—H3119.3C16—C15—C17127.2 (3)
C2—C3—H3119.3N3—C16—C15112.1 (3)
C3—C4—C5120.1 (3)N3—C16—C18122.1 (3)
C3—C4—H4120.0C15—C16—C18125.8 (3)
C5—C4—H4120.0C15—C17—H17A109.5
C6—C5—C4120.7 (3)C15—C17—H17B109.5
C6—C5—Br1120.2 (3)H17A—C17—H17B109.5
C4—C5—Br1119.0 (3)C15—C17—H17C109.5
C5—C6—C1120.3 (3)H17A—C17—H17C109.5
C5—C6—H6119.8H17B—C17—H17C109.5
C1—C6—H6119.8C16—C18—H18A109.5
N1—C7—C1122.4 (3)C16—C18—H18B109.5
N1—C7—H7118.8H18A—C18—H18B109.5
C1—C7—H7118.8C16—C18—H18C109.5
C13—C8—C9120.1 (3)H18A—C18—H18C109.5
C13—C8—N1123.3 (3)H18B—C18—H18C109.5
O3—S1—N2—C1456.9 (3)C9—C10—C11—S1176.4 (2)
O2—S1—N2—C14−173.4 (2)O3—S1—C11—C12−29.4 (3)
C11—S1—N2—C14−58.5 (3)O2—S1—C11—C12−162.7 (3)
C14—O4—N3—C160.5 (4)N2—S1—C11—C1285.3 (3)
C6—C1—C2—O1−178.9 (3)O3—S1—C11—C10154.8 (3)
C7—C1—C2—O1−1.4 (5)O2—S1—C11—C1021.5 (3)
C6—C1—C2—C31.8 (5)N2—S1—C11—C10−90.5 (3)
C7—C1—C2—C3179.3 (3)C10—C11—C12—C130.2 (5)
O1—C2—C3—C4178.3 (3)S1—C11—C12—C13−175.5 (3)
C1—C2—C3—C4−2.3 (5)C11—C12—C13—C8−0.9 (5)
C2—C3—C4—C51.0 (5)C9—C8—C13—C120.7 (5)
C3—C4—C5—C60.9 (5)N1—C8—C13—C12−178.7 (3)
C3—C4—C5—Br1−177.9 (3)N3—O4—C14—C15−0.2 (4)
C4—C5—C6—C1−1.4 (5)N3—O4—C14—N2−176.6 (3)
Br1—C5—C6—C1177.4 (2)S1—N2—C14—C15105.7 (4)
C7—C1—C6—C5−177.5 (3)S1—N2—C14—O4−78.9 (3)
C2—C1—C6—C50.0 (5)O4—C14—C15—C16−0.1 (4)
C8—N1—C7—C1−178.3 (3)N2—C14—C15—C16175.5 (4)
C6—C1—C7—N1178.1 (3)O4—C14—C15—C17179.7 (4)
C2—C1—C7—N10.6 (5)N2—C14—C15—C17−4.7 (7)
C7—N1—C8—C134.9 (5)O4—N3—C16—C15−0.6 (5)
C7—N1—C8—C9−174.5 (3)O4—N3—C16—C18−180.0 (4)
C13—C8—C9—C100.1 (5)C14—C15—C16—N30.5 (5)
N1—C8—C9—C10179.6 (3)C17—C15—C16—N3−179.4 (4)
C8—C9—C10—C11−0.8 (5)C14—C15—C16—C18179.8 (5)
C9—C10—C11—C120.6 (5)C17—C15—C16—C180.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.80 (3)1.91 (3)2.577 (4)141 (3)
N2—H2···O1i0.75 (3)2.092.828 (4)171 (4)
C17—H17C···O1i0.962.583.248 (5)126
C7—H7···N3ii0.932.533.420 (4)161

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2069).

References

  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsion, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsion, USA.
  • Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hämäläinen, R., Lehtinen, M. & Turpeinen, U. (1986). Arch. Pharm.319, 415–420.
  • Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography