PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o741.
Published online 2008 March 29. doi:  10.1107/S1600536808007381
PMCID: PMC2960961

trans-4-(Phenoxy­meth­yl)cyclo­hexane­carboxylic acid

Abstract

The title compound, C14H18O3, is an important model compound in the synthesis of phenolic ethers. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, adjacent mol­ecules are linked by O—H(...)O hydrogen bonds.

Related literature

For related literature, see: Dunitz & Strickler (1966 [triangle]); Sekera & Marvel (1933 [triangle]); Luger et al. (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o741-scheme1.jpg

Experimental

Crystal data

  • C14H18O3
  • M r = 234.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o741-efi1.jpg
  • a = 6.178 (3) Å
  • b = 35.042 (8) Å
  • c = 6.526 (3) Å
  • β = 113.93 (4)°
  • V = 1291.4 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 292 (2) K
  • 0.45 × 0.25 × 0.24 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 2657 measured reflections
  • 2330 independent reflections
  • 1301 reflections with I > 2σ(I)
  • R int = 0.001
  • 3 standard reflections every 250 reflections intensity decay: 1.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.149
  • S = 0.97
  • 2330 reflections
  • 156 parameters
  • 9 restraints
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: DIFRAC (Gabe et al., 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007381/bv2092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007381/bv2092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

To compare the activity of 4-chloromethyl cyclohexane and 4-(tosyloxymethyl)cyclohexane, some cyclohexane derivatives were designed to be linked to substituted phenol. Thus the title compound, a trans-4-(phenoxymethyl)cyclohexanecarboxylic acid was synthesized (Sekera & Marvel,1933). We report here the crystal structure of the title compound. The cyclohexane ring of the title compound adopts a chair conformation. The average C—C bond length of the cyclohexane ring is 1.517 (12) Å, is similar to that of trans-1,4-cyclohexanedicarboxylic acid (1.523 (3) Å, Luger et al., 1972). The mean endocyclic angle of the cyclohexane is 110.9 (8)°, which is in the range observed for cyclohexane rings (111.4 (4)°, Dunitz & Strickler, 1966).

Experimental

Methyl trans-4-(tosylmethyl)cyclohexanecarboxylate(3.26 g, 10 mmol), phenol(2.82 g, 30 mmol) and potassium phosphate(10.6 g, 50 mmol) were suspended in dry DMF(20 mL) and heated at 368 K for 6 h, then 30 mL water and 30 mL toluene were added to the mixture. The water layer separated was washed twice with toluene and the organic layer combined was washed with water and then dried with sodium sulfate. After filtration and concentration, the crude product was obtained which was further purified by silica gel column chromatography to give pure methyl ester. The ester was hydrolyzed in a mixed solution of 10 mL e thanol and 15 mL 1 N NaOH solution for 5 h at 313 K, after cooling and acidification with hydrochloride the white solid precipitated was collected. Colorless crystals were obtained by slow evaporation in a ethanol-water(4:1) solution at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H18O3F(000) = 504
Mr = 234.28Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.178 (3) ÅCell parameters from 30 reflections
b = 35.042 (8) Åθ = 4.5–9.5°
c = 6.526 (3) ŵ = 0.08 mm1
β = 113.93 (4)°T = 292 K
V = 1291.4 (9) Å3Block, colourless
Z = 40.45 × 0.25 × 0.24 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.001
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 3.5°
graphiteh = −7→6
ω/2–θ scansk = 0→42
2657 measured reflectionsl = −1→7
2330 independent reflections3 standard reflections every 250 reflections
1301 reflections with I > 2σ(I) intensity decay: 1.8%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0395P)2] where P = (Fo2 + 2Fc2)/3
2330 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.17 e Å3
9 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.5351 (13)0.8410 (2)−0.0641 (11)0.084 (2)
O21.0653 (15)0.9709 (3)0.8119 (13)0.110 (3)
H21.11660.98700.91150.132*
O30.7287 (14)0.9889 (2)0.8198 (11)0.104 (3)
C10.584 (2)0.8016 (3)−0.328 (2)0.087 (4)
H10.74440.8012−0.23540.105*
C20.494 (4)0.7816 (4)−0.531 (3)0.112 (6)
H2A0.59710.7680−0.57580.134*
C30.260 (4)0.7818 (4)−0.662 (3)0.117 (6)
H30.20300.7679−0.79510.141*
C40.103 (3)0.8026 (4)−0.6030 (19)0.102 (5)
H4−0.05710.8032−0.69620.123*
C50.192 (3)0.8225 (3)−0.3991 (19)0.085 (4)
H50.08930.8360−0.35430.102*
C60.425 (3)0.8221 (3)−0.268 (2)0.074 (4)
C70.3845 (19)0.8640 (3)0.0058 (16)0.080 (4)
H7A0.26530.84830.02570.096*
H7B0.30520.8834−0.10600.096*
C80.5426 (19)0.8826 (3)0.2262 (15)0.062 (3)
H80.63100.86250.33140.074*
C90.3865 (17)0.9033 (3)0.3227 (15)0.076 (4)
H9A0.29120.92230.21630.092*
H9B0.28020.88520.34600.092*
C100.5351 (19)0.9225 (3)0.5425 (15)0.076 (4)
H10A0.43230.93600.59750.092*
H10B0.62100.90330.65240.092*
C110.7078 (19)0.9501 (3)0.5158 (16)0.066 (3)
H110.61430.96890.40370.079*
C120.8661 (18)0.9296 (3)0.4193 (15)0.075 (3)
H12A0.97040.94800.39420.091*
H12B0.96350.91080.52610.091*
C130.7164 (19)0.9100 (3)0.2005 (16)0.077 (3)
H13A0.63100.92920.08980.092*
H13B0.81910.89640.14600.092*
C140.842 (2)0.9717 (4)0.7277 (17)0.073 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.102 (6)0.090 (6)0.065 (5)−0.001 (5)0.040 (5)−0.021 (5)
O20.103 (7)0.143 (9)0.085 (6)0.002 (7)0.040 (6)−0.046 (5)
O30.109 (7)0.127 (8)0.083 (6)0.020 (6)0.046 (5)−0.031 (5)
C10.120 (12)0.073 (9)0.093 (9)0.000 (8)0.068 (9)−0.004 (8)
C20.179 (18)0.097 (12)0.102 (12)−0.012 (13)0.100 (13)−0.017 (10)
C30.20 (2)0.099 (12)0.078 (11)−0.008 (14)0.078 (13)−0.007 (9)
C40.152 (14)0.093 (11)0.070 (9)−0.011 (10)0.052 (10)−0.013 (8)
C50.114 (12)0.088 (10)0.058 (8)0.000 (9)0.038 (8)−0.009 (8)
C60.108 (12)0.063 (9)0.063 (8)0.000 (9)0.045 (9)0.002 (7)
C70.098 (9)0.090 (9)0.066 (7)−0.006 (8)0.049 (7)−0.010 (7)
C80.080 (8)0.056 (8)0.051 (6)0.001 (7)0.029 (6)−0.004 (6)
C90.088 (9)0.095 (10)0.061 (7)−0.013 (7)0.045 (7)−0.013 (7)
C100.096 (9)0.090 (9)0.062 (7)−0.025 (8)0.052 (7)−0.021 (7)
C110.084 (9)0.065 (8)0.050 (6)0.005 (7)0.030 (6)−0.010 (6)
C120.088 (9)0.079 (9)0.067 (7)−0.012 (7)0.039 (7)−0.011 (7)
C130.089 (9)0.098 (10)0.059 (7)−0.013 (8)0.044 (7)−0.017 (7)
C140.068 (9)0.102 (10)0.055 (7)0.013 (9)0.030 (7)0.004 (7)

Geometric parameters (Å, °)

O1—C61.394 (12)C7—H7B0.9700
O1—C71.438 (10)C8—C131.501 (12)
O2—C141.261 (11)C8—C91.532 (11)
O2—H20.8200C8—H80.9800
O3—C141.248 (11)C9—C101.512 (12)
C1—C61.392 (14)C9—H9A0.9700
C1—C21.401 (16)C9—H9B0.9700
C1—H10.9300C10—C111.501 (12)
C2—C31.350 (18)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—C41.386 (17)C11—C141.497 (13)
C3—H30.9300C11—C121.540 (12)
C4—C51.402 (13)C11—H110.9800
C4—H40.9300C12—C131.514 (12)
C5—C61.341 (14)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C7—C81.519 (12)C13—H13A0.9700
C7—H7A0.9700C13—H13B0.9700
C6—O1—C7116.2 (9)C10—C9—H9A109.4
C14—O2—H2109.5C8—C9—H9A109.4
C6—C1—C2118.1 (14)C10—C9—H9B109.4
C6—C1—H1120.9C8—C9—H9B109.4
C2—C1—H1120.9H9A—C9—H9B108.0
C3—C2—C1120.5 (16)C11—C10—C9111.3 (8)
C3—C2—H2A119.8C11—C10—H10A109.4
C1—C2—H2A119.8C9—C10—H10A109.4
C2—C3—C4121.1 (16)C11—C10—H10B109.4
C2—C3—H3119.5C9—C10—H10B109.4
C4—C3—H3119.5H10A—C10—H10B108.0
C3—C4—C5118.5 (14)C14—C11—C10111.9 (8)
C3—C4—H4120.7C14—C11—C12114.1 (10)
C5—C4—H4120.7C10—C11—C12110.2 (8)
C6—C5—C4120.3 (12)C14—C11—H11106.7
C6—C5—H5119.8C10—C11—H11106.7
C4—C5—H5119.8C12—C11—H11106.7
C5—C6—C1121.5 (12)C13—C12—C11110.5 (9)
C5—C6—O1125.9 (11)C13—C12—H12A109.5
C1—C6—O1112.7 (13)C11—C12—H12A109.5
O1—C7—C8106.9 (9)C13—C12—H12B109.5
O1—C7—H7A110.3C11—C12—H12B109.5
C8—C7—H7A110.3H12A—C12—H12B108.1
O1—C7—H7B110.3C8—C13—C12112.1 (7)
C8—C7—H7B110.3C8—C13—H13A109.2
H7A—C7—H7B108.6C12—C13—H13A109.2
C13—C8—C7112.5 (8)C8—C13—H13B109.2
C13—C8—C9109.9 (8)C12—C13—H13B109.2
C7—C8—C9108.8 (9)H13A—C13—H13B107.9
C13—C8—H8108.5O3—C14—O2122.0 (11)
C7—C8—H8108.5O3—C14—C11118.6 (11)
C9—C8—H8108.5O2—C14—C11119.4 (11)
C10—C9—C8111.1 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.832.626 (10)164.

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2092).

References

  • Dunitz, J. D. & Strickler, P. (1966). Helv. Chim. Acta, 49, 290–291.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.
  • Luger, P., Plieth, K. & Ruban, G. (1972). Acta Cryst. B28, 706–710.
  • Sekera, V. C. & Marvel, C. S. (1933). J. Am. Chem. Soc. B55, 345–349.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography