PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o771.
Published online 2008 March 29. doi:  10.1107/S1600536808008167
PMCID: PMC2960956

4-Bromo­phenyl benzoate

Abstract

The structure of the title compound (4BPBA), C13H9BrO2, is similar to that of phenyl benzoate (PBA), 4-methyl­phenyl benzoate (4MePBA) and 4-methoxy­phenyl benzoate, with somewhat different bond parameters. The dihedral angle between the phenyl and benzoyl rings in 4BPBA is 58.43 (17)°, compared with values of 55.7° in PBA and 60.17 (7)° in 4MPBA. The mol­ecules in the title compound are packed into infinite chains in the a-axis direction.

Related literature

For related literature, see: Adams & Morsi (1976 [triangle]); Gowda, Foro, Babitha & Fuess (2007 [triangle]); Gowda, Foro, Nayak & Fuess (2007 [triangle]); Nayak & Gowda (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o771-scheme1.jpg

Experimental

Crystal data

  • C13H9BrO2
  • M r = 277.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o771-efi1.jpg
  • a = 7.748 (1) Å
  • b = 5.5946 (7) Å
  • c = 26.814 (5) Å
  • V = 1162.3 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.67 mm−1
  • T = 299 (2) K
  • 0.38 × 0.30 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.241, T max = 0.685
  • 1986 measured reflections
  • 1442 independent reflections
  • 1252 reflections with I > 2σ(I)
  • R int = 0.039
  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.189
  • S = 1.15
  • 1442 reflections
  • 145 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 1.04 e Å−3
  • Δρmin = −1.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 375 Friedel pairs
  • Flack parameter: −0.04 (6)

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808008167/om2221sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808008167/om2221Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions to his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 4-bromophenyl benzoate (4BPBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The structure of 4BPBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 4-methylphenyl benzoate (4MePBA), 4-methoxyphenyl benzoate (4MeOPBA), 3-methylphenyl benzoate (3MePBA), 2,3-dichlorophenyl benzoate (23DCPBA) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The bond parameters in 4BPBA are similar to those in PBA, 4MePBA, 4MeOPBA, 3MePBA, 23DCPBA and other benzoates (Adams & Morsi, 1976; Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The molecules in the title compound are packed into chains in the bc plane (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93 Å) with Uiso = 1.2 Ueq of the parent atom.

The residual electron-density features are located in the region of Br1. The highest peak is 0.91 Å from C4 and deepest hole is 0.78 Å from Br1.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound as viewed down the bc plane.

Crystal data

C13H9BrO2F000 = 552
Mr = 277.11Dx = 1.584 Mg m3
Orthorhombic, Pca21Cu Kα radiation λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 7.748 (1) Åθ = 9.9–23.4º
b = 5.5946 (7) ŵ = 4.67 mm1
c = 26.814 (5) ÅT = 299 (2) K
V = 1162.3 (3) Å3Plate, colourless
Z = 40.38 × 0.30 × 0.08 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.039
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 3.3º
T = 299(2) Kh = −1→9
ω/2θ scansk = −1→6
Absorption correction: ψ scan(North et al., 1968)l = −8→32
Tmin = 0.242, Tmax = 0.6853 standard reflections
1986 measured reflections every 120 min
1442 independent reflections intensity decay: 2.0%
1252 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059  w = 1/[σ2(Fo2) + (0.1268P)2 + 0.565P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189(Δ/σ)max = 0.001
S = 1.15Δρmax = 1.04 e Å3
1442 reflectionsΔρmin = −1.32 e Å3
145 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), with 375 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.29159 (16)0.2659 (2)−0.12742 (8)0.0950 (5)
O10.4692 (6)0.1882 (9)0.0901 (2)0.0581 (13)
O20.3231 (11)0.5195 (14)0.1104 (3)0.107 (3)
C10.4260 (8)0.2190 (10)0.0403 (3)0.0463 (14)
C20.4854 (8)0.4121 (12)0.0127 (3)0.0544 (16)
H20.55000.53210.02780.065*
C30.4478 (8)0.4229 (12)−0.0367 (3)0.0560 (17)
H30.48880.5492−0.05590.067*
C40.3474 (11)0.2440 (12)−0.0586 (3)0.0559 (17)
C50.2920 (9)0.0437 (12)−0.0313 (3)0.0589 (18)
H50.2301−0.0794−0.04620.071*
C60.3332 (9)0.0389 (13)0.0176 (3)0.0583 (17)
H60.2977−0.09080.03680.070*
C70.4106 (9)0.3510 (14)0.1226 (3)0.0577 (17)
C80.4601 (9)0.2976 (12)0.1748 (3)0.0521 (15)
C90.5527 (8)0.0900 (13)0.1879 (3)0.0585 (17)
H90.5846−0.02090.16380.070*
C100.5943 (10)0.0558 (13)0.2368 (4)0.0644 (19)
H100.6544−0.08200.24540.077*
C110.5530 (10)0.2107 (14)0.2731 (4)0.0627 (19)
H110.58340.18030.30600.075*
C120.4636 (9)0.4180 (14)0.2604 (3)0.0602 (17)
H120.43530.52840.28510.072*
C130.4164 (9)0.4607 (13)0.2112 (3)0.0585 (16)
H130.35580.59850.20290.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1056 (8)0.1322 (9)0.0472 (6)0.0167 (6)−0.0058 (7)−0.0056 (7)
O10.053 (2)0.064 (3)0.058 (3)0.008 (2)−0.003 (2)−0.011 (3)
O20.145 (6)0.117 (5)0.059 (4)0.089 (5)0.005 (4)0.001 (4)
C10.044 (3)0.047 (3)0.049 (4)0.003 (2)−0.001 (3)−0.003 (3)
C20.046 (3)0.052 (3)0.066 (5)−0.007 (3)0.004 (3)−0.009 (3)
C30.055 (3)0.052 (3)0.061 (5)0.007 (3)0.011 (3)0.005 (3)
C40.058 (4)0.067 (4)0.042 (4)0.006 (3)0.005 (4)−0.006 (3)
C50.062 (4)0.049 (3)0.066 (5)−0.004 (3)−0.005 (4)−0.006 (3)
C60.054 (3)0.058 (4)0.063 (5)−0.012 (3)0.002 (4)0.010 (4)
C70.050 (3)0.068 (4)0.055 (4)0.019 (3)0.004 (3)0.002 (4)
C80.051 (3)0.055 (3)0.050 (4)−0.005 (3)0.006 (3)−0.001 (3)
C90.053 (3)0.062 (3)0.061 (4)0.017 (3)−0.004 (3)−0.010 (4)
C100.057 (3)0.062 (4)0.074 (5)0.007 (3)−0.008 (4)0.015 (4)
C110.056 (3)0.082 (5)0.050 (5)−0.001 (3)−0.002 (3)0.003 (4)
C120.064 (4)0.065 (4)0.052 (4)−0.007 (3)0.005 (4)−0.002 (4)
C130.056 (3)0.059 (4)0.060 (4)0.010 (3)−0.003 (3)0.001 (3)

Geometric parameters (Å, °)

Br1—C41.899 (9)C6—H60.9300
O1—C71.340 (10)C7—C81.481 (12)
O1—C11.388 (10)C8—C131.379 (11)
O2—C71.206 (9)C8—C91.410 (10)
C1—C61.379 (10)C9—C101.364 (12)
C1—C21.388 (10)C9—H90.9300
C2—C31.356 (12)C10—C111.342 (12)
C2—H20.9300C10—H100.9300
C3—C41.398 (11)C11—C121.392 (11)
C3—H30.9300C11—H110.9300
C4—C51.406 (11)C12—C131.390 (12)
C5—C61.351 (12)C12—H120.9300
C5—H50.9300C13—H130.9300
C7—O1—C1117.4 (5)O2—C7—C8124.1 (7)
C6—C1—C2120.4 (8)O1—C7—C8112.9 (6)
C6—C1—O1117.3 (6)C13—C8—C9119.5 (8)
C2—C1—O1122.0 (6)C13—C8—C7118.2 (6)
C3—C2—C1118.9 (6)C9—C8—C7122.2 (7)
C3—C2—H2120.5C10—C9—C8118.4 (7)
C1—C2—H2120.5C10—C9—H9120.8
C2—C3—C4119.9 (7)C8—C9—H9120.8
C2—C3—H3120.1C11—C10—C9123.4 (7)
C4—C3—H3120.1C11—C10—H10118.3
C3—C4—C5121.4 (8)C9—C10—H10118.3
C3—C4—Br1119.3 (6)C10—C11—C12118.7 (8)
C5—C4—Br1119.2 (6)C10—C11—H11120.7
C6—C5—C4116.7 (7)C12—C11—H11120.7
C6—C5—H5121.6C13—C12—C11120.4 (8)
C4—C5—H5121.6C13—C12—H12119.8
C5—C6—C1122.4 (7)C11—C12—H12119.8
C5—C6—H6118.8C8—C13—C12119.6 (7)
C1—C6—H6118.8C8—C13—H13120.2
O2—C7—O1123.0 (8)C12—C13—H13120.2
C7—O1—C1—C6−120.1 (7)C1—O1—C7—C8178.5 (6)
C7—O1—C1—C265.4 (9)O2—C7—C8—C13−5.8 (12)
C6—C1—C2—C31.3 (10)O1—C7—C8—C13175.9 (6)
O1—C1—C2—C3175.6 (6)O2—C7—C8—C9175.6 (9)
C1—C2—C3—C41.4 (10)O1—C7—C8—C9−2.7 (10)
C2—C3—C4—C5−3.8 (10)C13—C8—C9—C100.9 (10)
C2—C3—C4—Br1178.5 (5)C7—C8—C9—C10179.5 (7)
C3—C4—C5—C63.2 (10)C8—C9—C10—C11−0.6 (12)
Br1—C4—C5—C6−179.1 (6)C9—C10—C11—C12−0.3 (12)
C4—C5—C6—C1−0.5 (11)C10—C11—C12—C130.9 (11)
C2—C1—C6—C5−1.8 (11)C9—C8—C13—C12−0.3 (11)
O1—C1—C6—C5−176.4 (7)C7—C8—C13—C12−178.9 (7)
C1—O1—C7—O20.2 (12)C11—C12—C13—C8−0.6 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2221).

References

  • Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.
  • Enraf–Nonius (1996). CAD-4-PC Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.
  • Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.
  • Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63 In the press.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography