PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o746.
Published online 2008 March 29. doi:  10.1107/S1600536808007423
PMCID: PMC2960954

2-(4-Chloro­benzoyl­meth­yl)-2H-1,4-benzothia­zin-3(4H)-one

Abstract

The six-membered heterocyclic ring in the title compound, C16H12ClNO2S, exists in a conformation intermediate between twist-boat and chair. A one-dimensional chain structure is formed as a result of inter­molecular N—H(...)O and C—H(...)O hydrogen bonds via crystallographic inversion symmetry and translation along the a axis.

Related literature

For the synthesis and biological activities of related chalcones and 1,5-benzothia­zepines, see: Ansari et al. (2005 [triangle]); Pant et al. (2006 [triangle]). For microwave-assisted syntheses of related compounds, see: Dandia et al. (2002 [triangle]). For further related literature, see: Pant & Chugh (1989 [triangle]); Kirchner & Alexander (1959 [triangle]); Beryozkina et al. (2004 [triangle]); Pant et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o746-scheme1.jpg

Experimental

Crystal data

  • C16H12ClNO2S
  • M r = 317.78
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o746-efi1.jpg
  • a = 7.7273 (19) Å
  • b = 8.649 (2) Å
  • c = 12.298 (3) Å
  • α = 82.032 (3)°
  • β = 72.349 (2)°
  • γ = 68.829 (3)°
  • V = 730.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 273 (2) K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.876, T max = 1.000 (expected range = 0.814–0.929)
  • 3962 measured reflections
  • 2545 independent reflections
  • 2236 reflections with I > 2σ(I)
  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.082
  • S = 1.06
  • 2545 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007423/si2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007423/si2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Hebei Province (No. B2007000239), People’s Republic of China.

supplementary crystallographic information

Comment

1,5-Benzothiazepine and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals (Ansari et al., 2005; Pant et al., 2006). The reaction of 2-aminothiophenol with various α,β-unsaturated carbonyl compounds lead to the formation of 1,5-benzothiazepines. We have synthesized some 3-acetyl and 3-alkoxycarbonyl substituted 1,5-benzothiazepines, showing very good activity against fungus candida albicans by the reaction of 2-aminothiophenol with acetylacetone and ethyl acetoacetate. In continuation of our ongoing studies on the synthesis of 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepines for various biological activities, we reacted 2-aminothiophenol with β-aroylacrylic acids, but the formation of a seven-membered ring did not occur. Several authors have reported about the 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepine structure for the products of the reaction of 2-aminothiophenol with β-aroylacrylic acids (Pant & Chugh, 1989; Dandia et al., 2002), and others proposed the formation of 1,4-benzothiazin-3-ones (Kirchner & Alexander, 1959; Beryozkina et al., 2004).

So we repeated the experiment for several times and recrystallized the final product again. Upon X-ray diffraction analysis, along with the spectroscopic data we know that 1,4-benzothiazin-3-one was obtained as the only product (Fig. 1). In the crystalline state, the title compound form a one-dimensional chain structure due to intermolecular N—H···O and C—H···O hydrogen bonds via crystallographic inversion symmetry and translation along the a axis (Table 1). The substituent at atom C7 is equatorially oriented with a torsion angle O1–C8–C7–C9 = 8.3 (2)°. The carbonyl group is slightly turned relative to the chlorophenyl substituent with a torsion angle O2–C10–C11–C16 = 10.8 (2)°. The six-membered heterocycle in the title compound exists in intermediate conformation between twisted boat and chair type.

Experimental

4-(4-chlorophenyl)-4-oxo-2-butenoic acid was prepared by AlCl3 catalysed treatment of powdered meleic anhydride with chlorobenzene following the general literature procedure. (Pant et al., 1987). 2-Aminothiophenol (2 mmol) and 4-(4-chlorophenyl)-4-oxo-2-butenoic acid (2 mmol) were refluxed with dry ethanol saturated with hydrogen chloride gas. Excess of solvent was concentrated by distillation under reduced pressure and the residue crystallized from methanol to give the title compound as light yellow crystals suitable for X-ray structure determination. Analysis calculated for C16H12ClNO2S: C 60.47, H 3.81, N 4.41%; found: C 60.45, H 3.80, N 4.40%.

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (aryl C) and 0.97–0.98 Å (Csp3), and N—H distance of 0.86 Å, with all Uiso(H) = 1.2Ueq(Csp2).

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C16H12ClNO2SZ = 2
Mr = 317.78F000 = 328
Triclinic, P1Dx = 1.446 Mg m3
a = 7.7273 (19) ÅMo Kα radiation λ = 0.71073 Å
b = 8.649 (2) ÅCell parameters from 2700 reflections
c = 12.298 (3) Åθ = 2.5–28.0º
α = 82.032 (3)ºµ = 0.41 mm1
β = 72.349 (2)ºT = 273 (2) K
γ = 68.829 (3)ºLabellar, colorless
V = 730.0 (3) Å30.24 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2545 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.009
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −9→9
Tmin = 0.876, Tmax = 1.000k = −10→8
3962 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082  w = 1/[σ2(Fo2) + (0.0412P)2 + 0.2045P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2545 reflectionsΔρmax = 0.18 e Å3
190 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.60724 (7)0.61069 (8)0.87177 (5)0.0776 (2)
S10.31357 (6)0.84225 (6)0.23145 (3)0.04914 (15)
O10.30018 (15)0.92709 (13)0.52142 (9)0.0402 (3)
O20.28795 (16)0.57700 (15)0.57928 (11)0.0527 (3)
N10.54966 (17)0.90262 (15)0.36402 (11)0.0373 (3)
H10.59800.94980.39850.045*
C10.6460 (2)0.86774 (18)0.24884 (13)0.0363 (3)
C20.8326 (2)0.8708 (2)0.20508 (15)0.0474 (4)
H20.89530.88920.25320.057*
C30.9255 (3)0.8467 (2)0.09073 (16)0.0567 (5)
H31.05080.84880.06190.068*
C40.8333 (3)0.8197 (3)0.01912 (16)0.0632 (5)
H40.89590.8043−0.05820.076*
C50.6482 (3)0.8155 (3)0.06182 (15)0.0571 (5)
H50.58690.79630.01320.069*
C60.5527 (2)0.8397 (2)0.17663 (13)0.0418 (4)
C70.3290 (2)0.75703 (18)0.37328 (12)0.0344 (3)
H70.42740.64630.36660.041*
C80.3893 (2)0.87005 (17)0.42642 (12)0.0327 (3)
C90.1349 (2)0.74330 (18)0.44118 (12)0.0353 (3)
H9A0.04170.85400.45640.042*
H9B0.09180.69000.39520.042*
C100.1384 (2)0.64667 (18)0.55313 (13)0.0361 (3)
C11−0.0490 (2)0.63785 (17)0.63063 (13)0.0348 (3)
C12−0.2165 (2)0.68862 (19)0.59542 (14)0.0399 (4)
H12−0.21330.73010.52120.048*
C13−0.3878 (2)0.6784 (2)0.66903 (15)0.0448 (4)
H13−0.49920.71190.64480.054*
C14−0.3901 (2)0.6180 (2)0.77841 (15)0.0457 (4)
C15−0.2254 (3)0.5640 (2)0.81540 (15)0.0537 (4)
H15−0.22930.52190.88960.064*
C16−0.0555 (2)0.5732 (2)0.74112 (14)0.0467 (4)
H160.05630.53570.76520.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0481 (3)0.1072 (5)0.0628 (3)−0.0307 (3)0.0052 (2)0.0103 (3)
S10.0396 (2)0.0791 (3)0.0395 (2)−0.0307 (2)−0.01448 (18)0.0016 (2)
O10.0368 (6)0.0468 (6)0.0402 (6)−0.0183 (5)−0.0069 (5)−0.0085 (5)
O20.0335 (6)0.0611 (7)0.0604 (8)−0.0122 (5)−0.0183 (5)0.0097 (6)
N10.0339 (7)0.0453 (7)0.0402 (7)−0.0202 (6)−0.0103 (5)−0.0062 (5)
C10.0336 (8)0.0368 (8)0.0399 (8)−0.0150 (6)−0.0090 (6)0.0000 (6)
C20.0380 (9)0.0573 (10)0.0510 (10)−0.0223 (8)−0.0117 (7)0.0011 (8)
C30.0409 (10)0.0716 (12)0.0548 (11)−0.0273 (9)−0.0001 (8)0.0001 (9)
C40.0591 (12)0.0848 (14)0.0433 (10)−0.0350 (11)0.0042 (9)−0.0065 (9)
C50.0593 (11)0.0816 (13)0.0404 (9)−0.0376 (10)−0.0095 (8)−0.0051 (9)
C60.0378 (9)0.0499 (9)0.0403 (8)−0.0205 (7)−0.0080 (7)−0.0003 (7)
C70.0299 (7)0.0368 (8)0.0389 (8)−0.0132 (6)−0.0095 (6)−0.0036 (6)
C80.0284 (7)0.0329 (7)0.0381 (8)−0.0099 (6)−0.0121 (6)0.0000 (6)
C90.0298 (8)0.0371 (8)0.0427 (8)−0.0144 (6)−0.0107 (6)−0.0032 (6)
C100.0326 (8)0.0345 (8)0.0436 (8)−0.0118 (6)−0.0120 (6)−0.0040 (6)
C110.0341 (8)0.0318 (7)0.0404 (8)−0.0122 (6)−0.0110 (6)−0.0025 (6)
C120.0373 (8)0.0420 (8)0.0427 (8)−0.0169 (7)−0.0141 (7)0.0078 (7)
C130.0346 (8)0.0471 (9)0.0542 (10)−0.0166 (7)−0.0147 (7)0.0070 (7)
C140.0375 (9)0.0491 (9)0.0457 (9)−0.0161 (7)−0.0025 (7)−0.0021 (7)
C150.0521 (11)0.0704 (12)0.0363 (9)−0.0216 (9)−0.0106 (8)0.0047 (8)
C160.0418 (9)0.0573 (10)0.0431 (9)−0.0155 (8)−0.0170 (7)0.0002 (7)

Geometric parameters (Å, °)

Cl1—C141.7394 (17)C7—C81.5135 (19)
S1—C61.7573 (16)C7—C91.5173 (19)
S1—C71.8182 (15)C7—H70.9800
O1—C81.2284 (18)C9—C101.511 (2)
O2—C101.2129 (18)C9—H9A0.9700
N1—C81.3489 (18)C9—H9B0.9700
N1—C11.403 (2)C10—C111.494 (2)
N1—H10.8600C11—C161.389 (2)
C1—C21.386 (2)C11—C121.390 (2)
C1—C61.394 (2)C12—C131.384 (2)
C2—C31.377 (2)C12—H120.9300
C2—H20.9300C13—C141.371 (2)
C3—C41.377 (3)C13—H130.9300
C3—H30.9300C14—C151.381 (3)
C4—C51.378 (3)C15—C161.376 (2)
C4—H40.9300C15—H150.9300
C5—C61.386 (2)C16—H160.9300
C5—H50.9300
C6—S1—C797.48 (7)O1—C8—C7122.41 (13)
C8—N1—C1126.91 (12)N1—C8—C7116.00 (12)
C8—N1—H1116.5C10—C9—C7113.70 (12)
C1—N1—H1116.5C10—C9—H9A108.8
C2—C1—C6119.70 (14)C7—C9—H9A108.8
C2—C1—N1119.38 (14)C10—C9—H9B108.8
C6—C1—N1120.82 (13)C7—C9—H9B108.8
C3—C2—C1120.31 (16)H9A—C9—H9B107.7
C3—C2—H2119.8O2—C10—C11120.79 (14)
C1—C2—H2119.8O2—C10—C9121.44 (14)
C4—C3—C2120.09 (16)C11—C10—C9117.77 (12)
C4—C3—H3120.0C16—C11—C12118.65 (14)
C2—C3—H3120.0C16—C11—C10118.96 (13)
C3—C4—C5120.09 (17)C12—C11—C10122.38 (14)
C3—C4—H4120.0C13—C12—C11121.08 (15)
C5—C4—H4120.0C13—C12—H12119.5
C4—C5—C6120.49 (17)C11—C12—H12119.5
C4—C5—H5119.8C14—C13—C12118.69 (15)
C6—C5—H5119.8C14—C13—H13120.7
C5—C6—C1119.31 (15)C12—C13—H13120.7
C5—C6—S1121.07 (13)C13—C14—C15121.61 (15)
C1—C6—S1119.58 (12)C13—C14—Cl1118.54 (13)
C8—C7—C9112.96 (12)C15—C14—Cl1119.85 (14)
C8—C7—S1107.61 (10)C16—C15—C14119.17 (16)
C9—C7—S1108.66 (10)C16—C15—H15120.4
C8—C7—H7109.2C14—C15—H15120.4
C9—C7—H7109.2C15—C16—C11120.77 (15)
S1—C7—H7109.2C15—C16—H16119.6
O1—C8—N1121.58 (13)C11—C16—H16119.6
C8—N1—C1—C2−164.11 (15)C9—C7—C8—N1−172.83 (12)
C8—N1—C1—C619.6 (2)S1—C7—C8—N1−52.90 (15)
C6—C1—C2—C30.2 (3)C8—C7—C9—C10−70.81 (16)
N1—C1—C2—C3−176.10 (16)S1—C7—C9—C10169.86 (10)
C1—C2—C3—C40.1 (3)C7—C9—C10—O2−5.5 (2)
C2—C3—C4—C5−0.5 (3)C7—C9—C10—C11175.14 (12)
C3—C4—C5—C60.5 (3)O2—C10—C11—C1610.8 (2)
C4—C5—C6—C1−0.2 (3)C9—C10—C11—C16−169.83 (14)
C4—C5—C6—S1177.63 (15)O2—C10—C11—C12−167.67 (15)
C2—C1—C6—C5−0.1 (2)C9—C10—C11—C1211.7 (2)
N1—C1—C6—C5176.12 (15)C16—C11—C12—C131.3 (2)
C2—C1—C6—S1−178.03 (12)C10—C11—C12—C13179.77 (14)
N1—C1—C6—S1−1.8 (2)C11—C12—C13—C140.4 (2)
C7—S1—C6—C5148.48 (15)C12—C13—C14—C15−1.5 (3)
C7—S1—C6—C1−33.66 (14)C12—C13—C14—Cl1178.29 (12)
C6—S1—C7—C858.07 (11)C13—C14—C15—C160.9 (3)
C6—S1—C7—C9−179.31 (10)Cl1—C14—C15—C16−178.92 (14)
C1—N1—C8—O1−169.12 (14)C14—C15—C16—C110.8 (3)
C1—N1—C8—C712.0 (2)C12—C11—C16—C15−1.9 (2)
C9—C7—C8—O18.3 (2)C10—C11—C16—C15179.53 (15)
S1—C7—C8—O1128.25 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.8812 (19)177
C7—H7···O2ii0.982.543.443 (2)152
C9—H9A···O1iii0.972.593.485 (2)153
C13—H13···O1iv0.932.593.400 (2)145

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+2, −z+1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2076).

References

  • Ansari, F. L., Umbreen, S., Hussain, L., Makhmoor, T., Nawaz, S. A., Lodhi, M. A., Khan, S. N., Shaheen, F., Choudhary, M. I. & Atta, U. R. (2005). Chem. Biodivers., 2, 487–496. [PubMed]
  • Beryozkina, T. V., Kolos, N. N., Orlov, V. D., Zubatyuk, R. I. & Shishkin, O. V. (2004). Phosphorus Sulfur Silicon, 179, 2153–2162.
  • Bruker (1997). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dandia, A., Sati, M. & Loupy, A. (2002). Green Chem.4, 599–602.
  • Kirchner, F. K. & Alexander, E. J. (1959). J. Am. Chem. Soc.81, 1721–1726.
  • Pant, S., Chandra, H., Sharma, P. & Pant, U. C. (2006). Indian J. Chem. Sect. B, 45, 1525–1530.
  • Pant, U. C. & Chugh, M. (1989). Indian J. Chem. Sect. B, 28, 435–436.
  • Pant, U. C., Gaur, B. S. & Chugh, M. (1987). Indian J. Chem. Sect. B, 26, 947–950.
  • Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography