PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o669.
Published online 2008 March 5. doi:  10.1107/S1600536808005837
PMCID: PMC2960953

2,3,4-Tri-O-acetyl-β-d-xylosyl 2,4-dichloro­phenoxy­acetate

Abstract

In the title compound, C19H20Cl2O10, the hexopyranosyl ring adopts a chair conformation. The four substituents are in equatorial positions. The mol­ecules arelinked via C—H(...)O contacts along the a axis.

Related literature

For related literature, see: Hamner et al. (1946 [triangle]); Chandra­sekhar & Pattabhi (1977 [triangle]); Dalton (2004 [triangle]); Tsorteki et al. (2004 [triangle]); Yang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o669-scheme1.jpg

Experimental

Crystal data

  • C19H20Cl2O10
  • M r = 479.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o669-efi1.jpg
  • a = 5.6601 (8) Å
  • b = 23.129 (3) Å
  • c = 8.7456 (13) Å
  • β = 104.281 (2)°
  • V = 1109.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 293 (2) K
  • 0.45 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: none
  • 5656 measured reflections
  • 3337 independent reflections
  • 3044 reflections with I > 2σ(I)
  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.121
  • S = 1.03
  • 3337 reflections
  • 284 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1325 Friedel pairs
  • Flack parameter: 0.04 (8)

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005837/si2071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005837/si2071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 30701041), the Postdoctoral Science Foundation of China (No. 20060400917) and Jiangsu Postdoctoral Science Foundation of China (No. 0602002B).

supplementary crystallographic information

Comment

The plant growth regulator 2,4-dichlorophenoxyacetic acid cocrystallized as a guest molecule in Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (Tsorteki et al., 2004), and it plays an important role in graining and controlling weeds (Hamner et al., 1946). However, problems such as toxic residues and environmental pollution were protruded increasingly by using amounts of herbicides during the past decades (Dalton, 2004). In order to search for a new herbicide with high efficiency and low toxicity, we obtained the title compound. All bond lengths and angles in the title molecule show normal values. The hexopyranosyl ring adopts a chair conformation (Fig. 1). The three acetyl groups are individually planar and occupy equatorial positions (Yang et al., 2004). The 2,4-dichlorophenoxyacetic acid group shows a similar geometry in 2-Chlorophenoxyacetic acid (Chandrasekhar & Pattabhi, 1977), and it is twisted at the bond of O3—C8—C7—O1, with the torsion angle of 4.3°. The title molecules are linked via intermolecular hydrogen bonding C—H···O contacts along the a axis by translation (Table 1).

Experimental

The title compound was prepared from α-D-1-bromo-2,3,4-tri-O- acetyl-xylosyl with 2,4-dichlorophenoxyacetic acid in aq NaOH at the benzyltriethylammonium chloride and 4-dimethylaminopyridine in present. Fine block colourless crystals for single-crystal X-ray diffraction were obtained by slow evaporation of an ethyl acetate at room temperature.

Refinement

The H atoms were refined by riding on their appropriate parent atoms in their as-found or calculated positions. The C—H distances for CH, CH2 and CH3 groups are 0.93, 0.96 and 0.97 Å, respectively, with Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). The absolute structure parameter was determined as 0.04 (8) (Flack, 1983). The number of Friedel pairs was found to be 1325 by comparison of merged intensity reflections (2012) with unmerged unique reflections of the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C19H20Cl2O10F000 = 496
Mr = 479.25Dx = 1.435 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 90 reflections
a = 5.6601 (8) Åθ = 2.4–25.0º
b = 23.129 (3) ŵ = 0.35 mm1
c = 8.7456 (13) ÅT = 293 (2) K
β = 104.281 (2)ºBlock, colourless
V = 1109.5 (3) Å30.45 × 0.23 × 0.21 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer3337 independent reflections
Radiation source: fine-focus sealed tube3044 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.089
Detector resolution: 9.00cm pixels mm-1θmax = 25.0º
T = 293(2) Kθmin = 2.4º
ω and [var phi] scansh = −6→5
Absorption correction: nonek = −27→15
5656 measured reflectionsl = −9→10

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.0733P)2 + 0.2029P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.29 e Å3
3337 reflectionsΔρmin = −0.31 e Å3
284 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1325 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.39611 (18)0.41178 (5)0.40852 (13)0.0708 (3)
Cl2−0.4306 (3)0.37317 (8)−0.0324 (2)0.1303 (7)
O10.2663 (5)0.31057 (11)0.5567 (3)0.0593 (6)
O20.1992 (6)0.16524 (12)0.6787 (3)0.0662 (7)
O30.3421 (4)0.20235 (10)0.4807 (3)0.0492 (5)
O40.6349 (4)0.13402 (10)0.5269 (3)0.0501 (6)
O50.1431 (4)0.15293 (10)0.1744 (3)0.0452 (5)
O60.2612 (5)0.22405 (14)0.0364 (4)0.0748 (9)
O70.4821 (4)0.08031 (10)0.0669 (2)0.0478 (5)
O80.1649 (6)0.01975 (16)0.0038 (4)0.0854 (10)
O90.7485 (4)0.00745 (10)0.2985 (2)0.0451 (5)
O101.1379 (4)0.01306 (11)0.4309 (3)0.0552 (6)
C1−0.0205 (8)0.38597 (19)0.1966 (5)0.0648 (10)
H10.01050.41810.14060.078*
C2−0.2255 (8)0.3534 (2)0.1430 (5)0.0733 (11)
C3−0.2759 (8)0.30616 (19)0.2235 (6)0.0724 (11)
H3−0.41650.28460.18410.087*
C4−0.1159 (7)0.29073 (17)0.3640 (5)0.0601 (9)
H4−0.15100.25920.42070.072*
C50.0968 (6)0.32194 (15)0.4211 (4)0.0502 (8)
C60.1387 (6)0.36984 (16)0.3357 (4)0.0520 (8)
C70.2153 (9)0.26725 (17)0.6570 (4)0.0632 (10)
H7A0.04810.27200.66410.076*
H7B0.31960.27340.76170.076*
C80.2479 (6)0.20569 (15)0.6091 (4)0.0470 (7)
C90.3960 (5)0.14523 (14)0.4394 (3)0.0406 (6)
H90.28110.11730.46470.049*
C100.3903 (5)0.14345 (14)0.2641 (3)0.0396 (6)
H100.50020.17260.23820.048*
C110.4660 (5)0.08292 (14)0.2273 (3)0.0383 (6)
H110.34420.05500.24350.046*
C120.7106 (5)0.06757 (13)0.3323 (4)0.0407 (6)
H120.83800.09170.30660.049*
C130.7069 (6)0.07587 (15)0.5044 (4)0.0462 (7)
H13A0.59310.04890.53230.055*
H13B0.86760.06840.57190.055*
C140.1046 (6)0.19246 (16)0.0576 (4)0.0479 (8)
C15−0.1479 (7)0.1900 (2)−0.0418 (5)0.0628 (10)
H15A−0.22490.2269−0.04040.094*
H15B−0.23780.1610−0.00130.094*
H15C−0.14500.1804−0.14810.094*
C160.3333 (7)0.04317 (17)−0.0295 (4)0.0543 (9)
C170.4131 (10)0.0352 (2)−0.1786 (5)0.0802 (14)
H17A0.55230.0101−0.15930.120*
H17B0.45570.0721−0.21480.120*
H17C0.28270.0184−0.25750.120*
C180.9736 (5)−0.01395 (15)0.3484 (4)0.0439 (7)
C190.9926 (7)−0.07338 (17)0.2889 (5)0.0620 (9)
H19A1.0063−0.07160.18180.093*
H19B0.8497−0.09500.29340.093*
H19C1.1343−0.09200.35310.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0728 (6)0.0576 (6)0.0782 (6)−0.0171 (5)0.0114 (5)−0.0004 (5)
Cl20.1225 (12)0.1201 (14)0.1079 (10)−0.0217 (10)−0.0481 (9)0.0335 (10)
O10.0780 (16)0.0361 (13)0.0569 (14)0.0026 (12)0.0038 (12)−0.0004 (11)
O20.100 (2)0.0457 (16)0.0624 (16)0.0022 (14)0.0379 (14)0.0033 (12)
O30.0682 (14)0.0353 (13)0.0468 (12)0.0000 (10)0.0191 (10)−0.0025 (10)
O40.0557 (13)0.0461 (15)0.0444 (12)0.0009 (10)0.0044 (10)−0.0115 (10)
O50.0425 (11)0.0481 (14)0.0462 (12)−0.0016 (9)0.0130 (9)0.0082 (10)
O60.0692 (16)0.076 (2)0.0702 (17)−0.0201 (15)−0.0009 (13)0.0305 (15)
O70.0600 (13)0.0497 (14)0.0362 (10)−0.0045 (11)0.0170 (9)−0.0007 (10)
O80.090 (2)0.091 (3)0.0718 (19)−0.0339 (19)0.0142 (16)−0.0312 (17)
O90.0458 (11)0.0385 (13)0.0508 (12)−0.0028 (9)0.0114 (9)−0.0053 (10)
O100.0480 (12)0.0565 (16)0.0585 (14)−0.0034 (11)0.0084 (10)−0.0008 (12)
C10.075 (2)0.057 (2)0.058 (2)−0.0028 (19)0.0095 (17)0.0090 (18)
C20.070 (2)0.067 (3)0.071 (2)0.001 (2)−0.0058 (19)0.006 (2)
C30.065 (2)0.050 (2)0.095 (3)−0.0128 (18)0.003 (2)−0.003 (2)
C40.068 (2)0.037 (2)0.074 (2)−0.0035 (16)0.0142 (18)0.0021 (17)
C50.0619 (19)0.0340 (18)0.0543 (18)0.0064 (15)0.0134 (15)−0.0033 (14)
C60.0598 (18)0.0414 (19)0.0548 (18)0.0017 (15)0.0142 (15)−0.0048 (15)
C70.097 (3)0.041 (2)0.052 (2)0.0103 (19)0.0190 (19)−0.0014 (17)
C80.0599 (18)0.0381 (19)0.0414 (15)0.0056 (14)0.0095 (14)0.0016 (14)
C90.0506 (16)0.0316 (16)0.0395 (15)−0.0021 (13)0.0112 (12)−0.0031 (12)
C100.0399 (14)0.0401 (17)0.0389 (14)−0.0072 (12)0.0099 (11)0.0027 (13)
C110.0443 (14)0.0404 (17)0.0331 (13)−0.0098 (12)0.0150 (11)−0.0017 (12)
C120.0418 (15)0.0334 (17)0.0477 (16)−0.0036 (13)0.0125 (12)−0.0020 (13)
C130.0502 (16)0.0423 (19)0.0442 (16)0.0044 (14)0.0081 (13)−0.0024 (14)
C140.0517 (17)0.051 (2)0.0423 (16)−0.0055 (15)0.0146 (13)−0.0017 (14)
C150.0564 (19)0.073 (3)0.058 (2)0.0036 (18)0.0110 (16)0.0126 (19)
C160.069 (2)0.046 (2)0.0420 (17)0.0046 (17)0.0039 (16)−0.0052 (15)
C170.132 (4)0.065 (3)0.044 (2)0.019 (3)0.023 (2)−0.0076 (19)
C180.0437 (17)0.0473 (19)0.0421 (16)−0.0012 (14)0.0136 (13)0.0055 (13)
C190.063 (2)0.051 (2)0.071 (2)0.0030 (17)0.0147 (17)−0.0049 (18)

Geometric parameters (Å, °)

Cl1—C61.735 (4)C5—C61.389 (5)
Cl2—C21.740 (4)C7—C81.508 (5)
O1—C51.355 (4)C7—H7A0.9700
O1—C71.407 (5)C7—H7B0.9700
O2—C81.185 (4)C9—C101.526 (4)
O3—C81.359 (4)C9—H90.9800
O3—C91.422 (4)C10—C111.521 (4)
O4—C91.404 (4)C10—H100.9800
O4—C131.433 (4)C11—C121.503 (4)
O5—C141.347 (4)C11—H110.9800
O5—C101.442 (4)C12—C131.523 (4)
O6—C141.198 (4)C12—H120.9800
O7—C161.344 (4)C13—H13A0.9700
O7—C111.429 (3)C13—H13B0.9700
O8—C161.193 (5)C14—C151.479 (5)
O9—C181.336 (4)C15—H15A0.9600
O9—C121.448 (4)C15—H15B0.9600
O10—C181.202 (4)C15—H15C0.9600
C1—C21.366 (6)C16—C171.493 (5)
C1—C61.375 (5)C17—H17A0.9600
C1—H10.9300C17—H17B0.9600
C2—C31.367 (6)C17—H17C0.9600
C3—C41.381 (6)C18—C191.483 (5)
C3—H30.9300C19—H19A0.9600
C4—C51.387 (5)C19—H19B0.9600
C4—H40.9300C19—H19C0.9600
C5—O1—C7118.3 (3)O7—C11—C12108.5 (2)
C8—O3—C9114.5 (2)O7—C11—C10109.6 (2)
C9—O4—C13111.5 (2)C12—C11—C10110.7 (2)
C14—O5—C10118.0 (2)O7—C11—H11109.3
C16—O7—C11117.4 (3)C12—C11—H11109.3
C18—O9—C12117.8 (2)C10—C11—H11109.3
C2—C1—C6118.0 (4)O9—C12—C11105.2 (2)
C2—C1—H1121.0O9—C12—C13111.2 (2)
C6—C1—H1121.0C11—C12—C13109.8 (2)
C1—C2—C3122.1 (4)O9—C12—H12110.2
C1—C2—Cl2118.9 (4)C11—C12—H12110.2
C3—C2—Cl2119.1 (3)C13—C12—H12110.2
C2—C3—C4119.4 (4)O4—C13—C12109.1 (3)
C2—C3—H3120.3O4—C13—H13A109.9
C4—C3—H3120.3C12—C13—H13A109.9
C3—C4—C5120.4 (4)O4—C13—H13B109.9
C3—C4—H4119.8C12—C13—H13B109.9
C5—C4—H4119.8H13A—C13—H13B108.3
O1—C5—C4125.3 (3)O6—C14—O5122.9 (3)
O1—C5—C6116.6 (3)O6—C14—C15125.2 (3)
C4—C5—C6118.0 (3)O5—C14—C15111.8 (3)
C1—C6—C5122.1 (3)C14—C15—H15A109.5
C1—C6—Cl1118.7 (3)C14—C15—H15B109.5
C5—C6—Cl1119.2 (3)H15A—C15—H15B109.5
O1—C7—C8116.2 (3)C14—C15—H15C109.5
O1—C7—H7A108.2H15A—C15—H15C109.5
C8—C7—H7A108.2H15B—C15—H15C109.5
O1—C7—H7B108.2O8—C16—O7123.5 (3)
C8—C7—H7B108.2O8—C16—C17126.1 (4)
H7A—C7—H7B107.4O7—C16—C17110.4 (4)
O2—C8—O3124.6 (3)C16—C17—H17A109.5
O2—C8—C7122.9 (3)C16—C17—H17B109.5
O3—C8—C7112.5 (3)H17A—C17—H17B109.5
O4—C9—O3105.7 (2)C16—C17—H17C109.5
O4—C9—C10108.8 (2)H17A—C17—H17C109.5
O3—C9—C10109.1 (2)H17B—C17—H17C109.5
O4—C9—H9111.0O10—C18—O9122.5 (3)
O3—C9—H9111.0O10—C18—C19125.5 (3)
C10—C9—H9111.0O9—C18—C19112.0 (3)
O5—C10—C11108.1 (2)C18—C19—H19A109.5
O5—C10—C9108.6 (2)C18—C19—H19B109.5
C11—C10—C9107.4 (2)H19A—C19—H19B109.5
O5—C10—H10110.8C18—C19—H19C109.5
C11—C10—H10110.8H19A—C19—H19C109.5
C9—C10—H10110.8H19B—C19—H19C109.5
C6—C1—C2—C30.4 (7)O4—C9—C10—O5178.0 (2)
C6—C1—C2—Cl2179.7 (3)O3—C9—C10—O5−67.1 (3)
C1—C2—C3—C40.3 (7)O4—C9—C10—C1161.2 (3)
Cl2—C2—C3—C4−179.0 (4)O3—C9—C10—C11176.1 (2)
C2—C3—C4—C5−1.6 (7)C16—O7—C11—C12120.4 (3)
C7—O1—C5—C4−6.4 (5)C16—O7—C11—C10−118.6 (3)
C7—O1—C5—C6171.7 (3)O5—C10—C11—O767.4 (3)
C3—C4—C5—O1−179.8 (4)C9—C10—C11—O7−175.5 (2)
C3—C4—C5—C62.1 (5)O5—C10—C11—C12−172.9 (2)
C2—C1—C6—C50.2 (6)C9—C10—C11—C12−55.9 (3)
C2—C1—C6—Cl1−178.3 (3)C18—O9—C12—C11165.2 (2)
O1—C5—C6—C1−179.7 (3)C18—O9—C12—C13−76.0 (3)
C4—C5—C6—C1−1.4 (5)O7—C11—C12—O9−66.0 (3)
O1—C5—C6—Cl1−1.2 (4)C10—C11—C12—O9173.7 (2)
C4—C5—C6—Cl1177.0 (3)O7—C11—C12—C13174.3 (2)
C5—O1—C7—C878.3 (4)C10—C11—C12—C1354.0 (3)
C9—O3—C8—O2−4.1 (5)C9—O4—C13—C1263.7 (3)
C9—O3—C8—C7174.8 (3)O9—C12—C13—O4−171.9 (2)
O1—C7—C8—O2−176.0 (4)C11—C12—C13—O4−55.8 (3)
O1—C7—C8—O35.0 (5)C10—O5—C14—O6−8.1 (5)
C13—O4—C9—O3176.0 (2)C10—O5—C14—C15169.6 (3)
C13—O4—C9—C10−66.9 (3)C11—O7—C16—O812.6 (5)
C8—O3—C9—O4−87.9 (3)C11—O7—C16—C17−166.3 (3)
C8—O3—C9—C10155.2 (3)C12—O9—C18—O106.7 (4)
C14—O5—C10—C11−112.4 (3)C12—O9—C18—C19−172.9 (3)
C14—O5—C10—C9131.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.413.322 (6)168
C9—H9···O10i0.982.543.381 (4)144
C11—H11···O10i0.982.443.296 (4)146

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2071).

References

  • Bruker (2003). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrasekhar, K. & Pattabhi, V. (1977). Acta Cryst. B33, 1257–1260.
  • Dalton, R. (2004). Nature (London)432, 136–136. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hamner, C. L., Moulton, J. E. & Tukey, H. B. (1946). Science, 103, 476–477. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tsorteki, F., Bethanis, K. & Mentzafos, D. (2004). Carbohydrate Res.339, 233–240. [PubMed]
  • Yang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M., Jiao, K., Kassim, M. & Yamin, B. M. (2004). Acta Cryst. E60, o1902–o1904.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography