PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m557.
Published online 2008 March 14. doi:  10.1107/S160053680800679X
PMCID: PMC2960950

(Pyridino-15-crown-5-κ5 N,O,O′,O′′,O′′′)bis­(thio­cyanato-κN)manganese(II)

Abstract

The title complex, [Mn(NCS)2(C13H19NO4)] {systematic name: [3,6,9,12-tetra­oxa-18-aza­bicyclo­[12.3.1]octa­cosa-14(18),15,17-triene-κ5 N,O,O′,O′′,O′′′]bis­(thio­cyanato-κN)manganese(I­I)}, was obtained by the reaction of MnCl2·4H2O and NaSCN with pyridino-15-crown-5. The Mn2+ center has a distorted penta­gonal bipyramidal coordination geometry, coordinated by four O atoms and one N atom of the pyridino-15-crown-5 mol­ecule, and by the N atoms of the two NCS ligands.

Related literature

For the coordination ability of pyridine crown ethers with transition metals, see: Lamb et al. (1980 [triangle]). For Mn—N(NCS) and Mn—O bond-length data, see: Wei et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m557-scheme1.jpg

Experimental

Crystal data

  • [Mn(NCS)2(C13H19NO4)]
  • M r = 424.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m557-efi1.jpg
  • a = 15.211 (5) Å
  • b = 15.789 (5) Å
  • c = 7.868 (2) Å
  • β = 98.667 (4)°
  • V = 1868.0 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 273 (2) K
  • 0.42 × 0.35 × 0.31 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.690, T max = 0.756
  • 9681 measured reflections
  • 3294 independent reflections
  • 2266 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.113
  • S = 1.04
  • 3294 reflections
  • 214 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800679X/rn2037sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800679X/rn2037Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China, the Natural Science Foundation of Liaocheng University and Liaocheng University.

supplementary crystallographic information

Comment

The crown ethers, especially those containing one or more pyridine units have special coordination abilities with transition metal ions (Lamb et al., 1980). To the best of our knowledge, this is the first crystal structure of the P15—C-5 complex. We report here the synthesis and structure of an Mn2+ complex with the P15—C-5 ligand. The title complex consists of one Mn2+ ion bound to one P15—C-5 and two NCS- ligands. The Mn2+ ion is coordinated by four O atoms, one N atom of the P15—C-5 and two N atoms of the NCS- ligands. The O1, O2, O3, O4, N1 atoms of the P15—C-5 crown ether are approximately co-planar and the two NCS- ligands occupy the axial sites to form a distorted pentagonal bipyramid. Every O—Mn—O (or N) bond angle in the plane is nearly 72°, indicating that Mn2+ is situated at the center of the pentagon and the N,O atoms are located on the five corners. The average Mn—O [2.260 (3) Å] and Mn—N(NCS) [2.191 (3) Å] bond lengths are slightly bigger than the corresponding values in the complex [Mn(15—C-5)](SCN)2 [average 2.232 (5)Å and 2.130 (6) Å, respectively] (Wei et al., 1997).

Experimental

To a solution of pyridino-15-crown-5 (0.1265 g, 0.5 mmol) in 5 ml 1,2-dichloroethane was added 5 ml of an aqueous solution of MnCl2.4H2O (0.394 g, 2 mmol) and NaSCN (0.80 g, 1 mmol). The mixture was stirred for 2 hrs at room temperature and then separated. Single crystals of (1) were obtained by evaporation of the substrate (m.p. 447–449 K). Analysis calculated for C15H19MnN3O4S2: C 42.45, H 4.48, N 9.91%; found: C 42.39, H 4.38, N 10.10%.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.97 Å (aromatic) or 0.97Å (methylene) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

[Mn(NCS)2(C13H19NO4)]F000 = 876
Mr = 424.39Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 15.211 (5) ÅCell parameters from 2838 reflections
b = 15.789 (5) Åθ = 2.6–23.5º
c = 7.868 (2) ŵ = 0.95 mm1
β = 98.667 (4)ºT = 273 (2) K
V = 1868.0 (10) Å3Block, colorless
Z = 40.42 × 0.35 × 0.31 mm

Data collection

Bruker SMART diffractometer3294 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −15→18
Tmin = 0.690, Tmax = 0.756k = −18→18
9681 measured reflectionsl = −9→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0368P)2 + 2.3622P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3294 reflectionsΔρmax = 0.63 e Å3
214 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.74410 (4)0.96629 (4)0.17191 (7)0.04475 (19)
S10.51780 (7)0.82256 (8)0.45275 (15)0.0685 (3)
S20.85210 (10)1.19638 (8)−0.11436 (17)0.0796 (4)
N10.85451 (18)0.92824 (19)0.3697 (4)0.0412 (7)
N20.6473 (2)0.8938 (2)0.2869 (4)0.0575 (7)
N30.8384 (2)1.0415 (2)0.0450 (4)0.0566 (7)
O10.75950 (17)1.06277 (16)0.3868 (3)0.0526 (7)
O20.80310 (17)0.84282 (16)0.0915 (3)0.0516 (7)
O30.68245 (17)0.94099 (19)−0.1028 (3)0.0591 (7)
O40.63527 (17)1.06201 (18)0.1082 (4)0.0622 (8)
C10.7964 (3)1.0295 (3)0.5502 (5)0.0608 (11)
H1A0.75031.00270.60420.073*
H1B0.82271.07470.62450.073*
C20.8661 (2)0.9658 (2)0.5227 (4)0.0459 (9)
C30.9378 (3)0.9460 (3)0.6468 (5)0.0596 (11)
H30.94510.97190.75420.072*
C40.9980 (3)0.8868 (3)0.6068 (6)0.0661 (12)
H41.04680.87250.68770.079*
C50.9863 (3)0.8492 (3)0.4484 (5)0.0576 (11)
H51.02700.80960.42010.069*
C60.9129 (2)0.8712 (2)0.3317 (5)0.0440 (9)
C70.8949 (3)0.8344 (3)0.1544 (5)0.0577 (11)
H7A0.92960.86400.07930.069*
H7B0.91160.77510.15750.069*
C80.7770 (3)0.8223 (3)−0.0868 (5)0.0674 (12)
H8A0.78080.7617−0.10400.081*
H8B0.81570.8504−0.15640.081*
C90.6835 (3)0.8517 (3)−0.1365 (6)0.0748 (14)
H9A0.66350.8406−0.25740.090*
H9B0.64440.8222−0.06970.090*
C100.5985 (3)0.9822 (4)−0.1445 (6)0.0759 (14)
H10A0.55330.9520−0.09400.091*
H10B0.58080.9839−0.26820.091*
C110.6091 (3)1.0704 (3)−0.0733 (6)0.0761 (14)
H11A0.65411.1009−0.12400.091*
H11B0.55341.1012−0.09790.091*
C120.6526 (3)1.1394 (3)0.2025 (6)0.0741 (13)
H12A0.59911.17360.19270.089*
H12B0.69851.17160.15820.089*
C130.6826 (3)1.1154 (3)0.3863 (6)0.0703 (13)
H13A0.69761.16550.45590.084*
H13B0.63611.08470.43190.084*
C140.5933 (3)0.8648 (3)0.3547 (5)0.0575 (7)
C150.8454 (3)1.1064 (3)−0.0202 (5)0.0566 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0393 (3)0.0494 (4)0.0448 (3)0.0020 (3)0.0038 (2)0.0014 (3)
S10.0508 (6)0.0893 (9)0.0677 (7)−0.0094 (6)0.0163 (5)0.0039 (6)
S20.1000 (10)0.0599 (8)0.0809 (9)−0.0263 (7)0.0198 (7)−0.0050 (6)
N10.0364 (16)0.0466 (18)0.0405 (17)−0.0005 (14)0.0049 (13)0.0040 (14)
N20.0462 (17)0.0603 (18)0.0659 (18)−0.0026 (13)0.0079 (13)0.0037 (13)
N30.0511 (14)0.075 (2)0.0435 (15)−0.0143 (15)0.0065 (12)−0.0042 (13)
O10.0518 (16)0.0525 (16)0.0554 (16)0.0106 (13)0.0145 (13)−0.0077 (13)
O20.0526 (16)0.0547 (16)0.0474 (15)0.0010 (13)0.0069 (12)−0.0103 (12)
O30.0454 (16)0.076 (2)0.0520 (16)−0.0081 (14)−0.0062 (12)0.0020 (14)
O40.0485 (16)0.0656 (19)0.0708 (19)0.0135 (14)0.0037 (14)0.0110 (15)
C10.068 (3)0.073 (3)0.043 (2)−0.004 (2)0.013 (2)−0.008 (2)
C20.050 (2)0.051 (2)0.0370 (19)−0.0083 (18)0.0083 (17)0.0059 (17)
C30.067 (3)0.067 (3)0.041 (2)−0.024 (2)−0.005 (2)0.0091 (19)
C40.048 (2)0.070 (3)0.074 (3)−0.010 (2)−0.010 (2)0.029 (2)
C50.046 (2)0.056 (3)0.068 (3)0.0039 (19)0.001 (2)0.018 (2)
C60.040 (2)0.040 (2)0.052 (2)−0.0001 (17)0.0067 (17)0.0092 (17)
C70.053 (3)0.057 (3)0.064 (3)0.014 (2)0.014 (2)−0.004 (2)
C80.084 (3)0.064 (3)0.054 (3)−0.004 (2)0.008 (2)−0.018 (2)
C90.080 (3)0.086 (4)0.054 (3)−0.026 (3)−0.004 (2)−0.018 (2)
C100.047 (3)0.116 (4)0.059 (3)−0.006 (3)−0.010 (2)0.011 (3)
C110.047 (3)0.100 (4)0.077 (3)0.016 (3)−0.004 (2)0.030 (3)
C120.061 (3)0.060 (3)0.103 (4)0.026 (2)0.018 (3)0.008 (3)
C130.068 (3)0.061 (3)0.086 (3)0.018 (2)0.027 (3)−0.012 (2)
C140.0462 (17)0.0603 (18)0.0659 (18)−0.0026 (13)0.0079 (13)0.0037 (13)
C150.0511 (14)0.075 (2)0.0435 (15)−0.0143 (15)0.0065 (12)−0.0042 (13)

Geometric parameters (Å, °)

Mn1—N22.168 (3)C3—C41.377 (6)
Mn1—N12.195 (3)C3—H30.9300
Mn1—N32.213 (3)C4—C51.368 (6)
Mn1—O42.242 (3)C4—H40.9300
Mn1—O32.259 (3)C5—C61.380 (5)
Mn1—O12.262 (3)C5—H50.9300
Mn1—O22.276 (3)C6—C71.497 (5)
S1—C141.620 (4)C7—H7A0.9700
S2—C151.612 (5)C7—H7B0.9700
N1—C21.329 (4)C8—C91.490 (6)
N1—C61.330 (4)C8—H8A0.9700
N2—C141.140 (5)C8—H8B0.9700
N3—C151.158 (5)C9—H9A0.9700
O1—C11.423 (5)C9—H9B0.9700
O1—C131.433 (5)C10—C111.501 (7)
O2—C71.415 (4)C10—H10A0.9700
O2—C81.436 (5)C10—H10B0.9700
O3—C101.426 (5)C11—H11A0.9700
O3—C91.435 (5)C11—H11B0.9700
O4—C111.430 (5)C12—C131.498 (6)
O4—C121.433 (5)C12—H12A0.9700
C1—C21.500 (5)C12—H12B0.9700
C1—H1A0.9700C13—H13A0.9700
C1—H1B0.9700C13—H13B0.9700
C2—C31.386 (5)
N2—Mn1—N193.15 (12)C3—C4—H4119.9
N2—Mn1—N3177.51 (12)C4—C5—C6118.6 (4)
N1—Mn1—N389.32 (12)C4—C5—H5120.7
N2—Mn1—O485.63 (12)C6—C5—H5120.7
N1—Mn1—O4143.47 (11)N1—C6—C5121.4 (4)
N3—Mn1—O492.55 (12)N1—C6—C7116.0 (3)
N2—Mn1—O395.50 (11)C5—C6—C7122.6 (4)
N1—Mn1—O3142.50 (11)O2—C7—C6108.8 (3)
N3—Mn1—O382.35 (11)O2—C7—H7A109.9
O4—Mn1—O373.69 (11)C6—C7—H7A109.9
N2—Mn1—O192.52 (12)O2—C7—H7B109.9
N1—Mn1—O170.86 (10)C6—C7—H7B109.9
N3—Mn1—O188.56 (11)H7A—C7—H7B108.3
O4—Mn1—O172.72 (10)O2—C8—C9107.4 (3)
O3—Mn1—O1144.69 (10)O2—C8—H8A110.2
N2—Mn1—O289.15 (11)C9—C8—H8A110.2
N1—Mn1—O270.79 (10)O2—C8—H8B110.2
N3—Mn1—O291.40 (12)C9—C8—H8B110.2
O4—Mn1—O2145.52 (10)H8A—C8—H8B108.5
O3—Mn1—O272.93 (10)O3—C9—C8107.1 (3)
O1—Mn1—O2141.65 (9)O3—C9—H9A110.3
C2—N1—C6120.2 (3)C8—C9—H9A110.3
C2—N1—Mn1120.2 (2)O3—C9—H9B110.3
C6—N1—Mn1119.4 (2)C8—C9—H9B110.3
C14—N2—Mn1171.8 (3)H9A—C9—H9B108.5
C15—N3—Mn1141.6 (3)O3—C10—C11107.2 (3)
C1—O1—C13115.3 (3)O3—C10—H10A110.3
C1—O1—Mn1114.1 (2)C11—C10—H10A110.3
C13—O1—Mn1113.3 (2)O3—C10—H10B110.3
C7—O2—C8115.7 (3)C11—C10—H10B110.3
C7—O2—Mn1113.1 (2)H10A—C10—H10B108.5
C8—O2—Mn1113.7 (2)O4—C11—C10106.5 (4)
C10—O3—C9116.1 (3)O4—C11—H11A110.4
C10—O3—Mn1111.6 (3)C10—C11—H11A110.4
C9—O3—Mn1109.6 (2)O4—C11—H11B110.4
C11—O4—C12116.1 (4)C10—C11—H11B110.4
C11—O4—Mn1111.8 (3)H11A—C11—H11B108.6
C12—O4—Mn1112.8 (2)O4—C12—C13106.8 (4)
O1—C1—C2108.0 (3)O4—C12—H12A110.4
O1—C1—H1A110.1C13—C12—H12A110.4
C2—C1—H1A110.1O4—C12—H12B110.4
O1—C1—H1B110.1C13—C12—H12B110.4
C2—C1—H1B110.1H12A—C12—H12B108.6
H1A—C1—H1B108.4O1—C13—C12106.2 (3)
N1—C2—C3121.4 (4)O1—C13—H13A110.5
N1—C2—C1115.4 (3)C12—C13—H13A110.5
C3—C2—C1123.2 (4)O1—C13—H13B110.5
C4—C3—C2118.1 (4)C12—C13—H13B110.5
C4—C3—H3120.9H13A—C13—H13B108.7
C2—C3—H3120.9N2—C14—S1179.1 (4)
C5—C4—C3120.3 (4)N3—C15—S2178.3 (4)
C5—C4—H4119.9

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2037).

References

  • Lamb, J. D., Izatt, R. M., Swain, C. S. & Christensen, J. J. (1980). J. Am. Chem. Soc 102, 475–479.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wei, Y. H., Dai, Y. & Huang, B. B. (1997). Chem. J. Chin. Univ 18, 193–195.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography