PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o647.
Published online 2008 March 5. doi:  10.1107/S1600536808005497
PMCID: PMC2960945

2-Thienylcarbonylmethylene–triphenylphosphorane ylide

Abstract

In the mol­ecule of the title compound, (2-thienylcarbon­yl)(triphenyl­phospho­nio)methanide, C24H19OPS, the geometry around the P atom is nearly tetra­hedral and the O—C—C—P torsion angle is 2.80 (3)°. The thio­phene ring is twisted through an angle of 4.33 (4)° with respect to the plane of the carbonyl group. Inter- and intra­molecular hydrogen bonds and C—H(...)π inter­actions are present in the crystal structure.

Related literature

For related literature, see: Allen et al. (1987 [triangle]); Bart (1969 [triangle]); Dunitz (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o647-scheme1.jpg

Experimental

Crystal data

  • C24H19OPS
  • M r = 386.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o647-efi3.jpg
  • a = 11.3076 (17) Å
  • b = 15.474 (2) Å
  • c = 11.3540 (16) Å
  • β = 97.063 (12)°
  • V = 1971.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 120 (2) K
  • 0.4 × 0.25 × 0.2 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2005 [triangle]) T min = 0.930, T max = 0.950
  • 7138 measured reflections
  • 4130 independent reflections
  • 4082 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.116
  • S = 1.03
  • 4130 reflections
  • 244 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3361 Friedel pairs
  • Flack parameter: 0.03 (7)

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005497/bq2064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005497/bq2064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Bu-Ali Sina University for financial support.

supplementary crystallographic information

Comment

Phosphoranes of the type (C6H5)3PCHCOC4H3S (TPPY) can coordinate to metals through either C or O atoms. The crystal and molecular structure of this ylide was determined successfully. The structural investigation with metrical parameters for the title compound, (I), show that how they vary with a change in delocalization in the metal derivatives as well as in other resonance stabilized ylides. In this molecule, the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987).

The P1—C6 bond length [1.727 (2) Å], is shorter than the other P—C bonds (Table 1) and longer than the equivalent bond lengths of 1.66 Å reported for methylenetriphenylphosphorane (Bart, 1969), which shows partial double-bond character for these two bonds.

The C4—S1 and C1—S1 bond lengths of 1.712 (3) Å and 1.719 (2) Å are longer than the other C—C bonds. These bond distances suggest resonance delocalization in the molecule (Fig. 2). The resonance formulation is supported by the near planarity of P1, C6, C5 and O1 in TPPY. The torsion angle O1—C2—C1—P1 of 2.80 (3)° also indicates resonance.

The thiophenyl group is twisted with respect to the plane containing the carbonyl group through angles of 4.33 (4)°. Bond angle of 118.30 (16)° for P1—C6—C5, indicate a distorted trigonal arrangement about C6. The non-bonded distances P1—O1 of 2.990 (3) Å of TPPY is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å) (Dunitz, 1979), indicating a strong intramolecular interaction between P+ and O- charge centers, which leads to the cis orientation. Packing diagram of TPPY is shown in Fig. 3. A s it is clear from this diagram, there are some C—H···O inter- and intra-molecular interactions that seem to be effective in stability of packing (Table 2). There are four remarkable C—H···Cg (pi-ring) interactions; [H3···Cg1(C7/12)i = 2.82 Å and C3—H3···Cg1 = 140°, H8···Cg2(C19/24)i = 2.80 Å and C8—H8···Cg2 = 143°, H10···Cg2(C19/24)ii = 2.95 Å and C10—H10···Cg2 = 143°, H23···Cg3(C13/18)iii = 2.82 Å and C23—H23···Cg1 = 127°, with symmetry codes; (i) X,-Y,1/2+Z, (ii) -1/2+X,-1/2+Y,Z and (iii) X,-Y,-1/2+Z] which are effective in the stabilization of crystal packing.

Experimental

The title compound was prepared by addition of 2-bromo-acetothiophen (0.102 g, 0.5 mmol) in chloroform (25 ml) to a solution of triphenylphosphine (0.131 g, 0.5 mmol) in the same solvent (5 ml). The resulting pale pink solution was stirred for 12 h. The solution was concentrated under reduced pressure to 5 ml, and diethyl ether (20 ml) was added. The yellow solid formed was filtered off, washed with petroleum diethyl ether (10 ml), and dried under reduced pressure. In order to get the final product, all of the crude solid was transferred to an alkaline solution of 5% NaOH and stirred at 310 K for about 14 h, yielding the white precipitate. The product was washed several times with distilled water and air dried. The resulting solid was recrystallized from a chloroform-diethyl ether mixture (m.p. 496–498 K). Yield: 78%, 0.301 g.

Refinement

H atoms were positioned geometrically, with C—H=0.93 Å for aromatic and methine H and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
Resonance in the TPPY.
Fig. 3.
The packing of (I). Hydrogen bonds are shown as dashed lines. H atoms not participate in H bonding are omitted for clarity. Symmetry code: (i) -1/2 + x,-1/2 + y,z.

Crystal data

C24H19O1P1S1F000 = 808
Mr = 386.43Dx = 1.302 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2000 reflections
a = 11.3076 (17) Åθ = 2.2–27.9º
b = 15.474 (2) ŵ = 0.26 mm1
c = 11.3540 (16) ÅT = 120 (2) K
β = 97.063 (12)ºPrism, colorless
V = 1971.6 (5) Å30.4 × 0.25 × 0.2 mm
Z = 4

Data collection

Stoe IPDSII diffractometerRint = 0.059
rotation method scansθmax = 25.9º
Absorption correction: numerical(X-RED32; Stoe & Cie, 2005)θmin = 2.2º
Tmin = 0.930, Tmax = 0.950h = −14→14
7138 measured reflectionsk = −20→20
4130 independent reflectionsl = −14→14
4082 reflections with I > 2σ(I)

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0801P)2 + 1.5059P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.007
wR(F2) = 0.116Δρmax = 0.74 e Å3
S = 1.03Δρmin = −0.48 e Å3
4130 reflectionsExtinction correction: none
244 parametersAbsolute structure: Flack (1983), 3361 Friedel pairs
2 restraintsFlack parameter: 0.03 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.0560 (3)0.37507 (16)0.7865 (2)0.0305 (5)
H10.06670.42550.83110.037*
C2−0.0358 (2)0.31826 (17)0.7929 (2)0.0297 (5)
H2−0.09420.32540.84310.036*
C3−0.0319 (2)0.24653 (15)0.7135 (2)0.0262 (5)
H3−0.08750.20190.70580.031*
C40.0640 (2)0.25175 (14)0.6502 (2)0.0232 (4)
C50.1026 (2)0.19364 (13)0.5570 (2)0.0224 (4)
C60.0300 (2)0.12304 (14)0.5188 (2)0.0221 (4)
H6−0.03310.10680.55930.026*
C7−0.0633 (2)−0.00552 (13)0.3568 (2)0.0208 (4)
C8−0.0838 (2)−0.06819 (14)0.4413 (2)0.0243 (5)
H8−0.0315−0.07330.51090.029*
C9−0.1822 (2)−0.12279 (15)0.4217 (2)0.0272 (5)
H9−0.196−0.16380.47830.033*
C10−0.2600 (2)−0.11563 (15)0.3166 (2)0.0274 (5)
H10−0.3262−0.15160.30340.033*
C11−0.2385 (2)−0.05476 (15)0.2316 (2)0.0295 (5)
H11−0.29−0.05070.16130.035*
C12−0.1407 (2)0.00010 (14)0.2511 (2)0.0240 (4)
H12−0.12670.04060.19390.029*
C130.1935 (2)0.00050 (14)0.4095 (2)0.0212 (4)
C140.2881 (2)0.01748 (15)0.4970 (2)0.0277 (5)
H140.28250.06190.55110.033*
C150.3913 (3)−0.03241 (18)0.5029 (3)0.0340 (5)
H150.4547−0.02120.56110.041*
C160.3994 (2)−0.09902 (18)0.4220 (3)0.0345 (6)
H160.4685−0.13210.42590.041*
C170.3045 (3)−0.11623 (17)0.3350 (2)0.0327 (6)
H170.3102−0.16070.2810.039*
C180.2014 (3)−0.06698 (14)0.3290 (2)0.0272 (5)
H180.1376−0.07890.27140.033*
C190.0732 (2)0.13744 (14)0.26848 (19)0.0210 (4)
C20−0.0162 (2)0.19924 (14)0.2397 (2)0.0233 (4)
H20−0.07930.20370.28470.028*
C21−0.0099 (2)0.25406 (15)0.1430 (2)0.0280 (5)
H21−0.07030.2940.12190.034*
C220.0866 (3)0.24901 (15)0.0782 (2)0.0284 (5)
H220.09130.28640.01490.034*
C230.1750 (2)0.18886 (16)0.1075 (2)0.0269 (5)
H230.23940.18590.0640.032*
C240.1684 (2)0.13204 (15)0.2025 (2)0.0238 (4)
H240.22760.09080.22130.029*
O10.19781 (17)0.21153 (10)0.51549 (16)0.0280 (4)
P10.06067 (5)0.06711 (3)0.39443 (5)0.01906 (13)
S10.14871 (6)0.34234 (4)0.68674 (6)0.02845 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0429 (15)0.0251 (10)0.0223 (11)0.0022 (10)−0.0003 (10)−0.0063 (8)
C20.0360 (14)0.0310 (12)0.0225 (11)0.0044 (10)0.0055 (10)−0.0033 (9)
C30.0328 (13)0.0238 (10)0.0224 (10)0.0021 (9)0.0053 (9)−0.0005 (8)
C40.0281 (11)0.0195 (9)0.0218 (10)−0.0002 (8)0.0028 (9)−0.0007 (7)
C50.0286 (11)0.0182 (9)0.0208 (10)−0.0013 (8)0.0042 (9)0.0008 (7)
C60.0279 (12)0.0186 (9)0.0205 (10)−0.0044 (8)0.0063 (9)−0.0017 (7)
C70.0244 (10)0.0163 (9)0.0218 (10)−0.0007 (7)0.0032 (8)−0.0018 (7)
C80.0301 (13)0.0212 (10)0.0220 (11)0.0002 (8)0.0044 (9)0.0001 (7)
C90.0341 (13)0.0218 (10)0.0274 (11)−0.0056 (9)0.0105 (10)−0.0016 (8)
C100.0248 (11)0.0218 (10)0.0365 (13)−0.0043 (8)0.0074 (10)−0.0063 (9)
C110.0287 (13)0.0251 (10)0.0331 (12)0.0011 (9)−0.0029 (10)−0.0026 (9)
C120.0261 (12)0.0206 (10)0.0246 (10)0.0003 (8)0.0006 (9)0.0015 (8)
C130.0229 (11)0.0192 (9)0.0218 (10)0.0000 (8)0.0037 (8)0.0036 (8)
C140.0293 (13)0.0253 (10)0.0276 (11)−0.0017 (9)−0.0001 (10)0.0018 (9)
C150.0291 (13)0.0361 (13)0.0357 (13)0.0024 (10)−0.0001 (11)0.0084 (11)
C160.0282 (13)0.0358 (13)0.0407 (14)0.0092 (10)0.0097 (11)0.0125 (11)
C170.0407 (15)0.0290 (11)0.0294 (12)0.0107 (10)0.0075 (11)0.0021 (9)
C180.0329 (14)0.0247 (12)0.0243 (12)0.0048 (9)0.0047 (10)0.0001 (8)
C190.0252 (11)0.0192 (9)0.0186 (10)−0.0005 (8)0.0024 (8)−0.0009 (7)
C200.0282 (12)0.0178 (9)0.0243 (10)0.0011 (8)0.0051 (9)0.0022 (7)
C210.0336 (13)0.0234 (10)0.0263 (11)0.0018 (9)0.0011 (10)0.0045 (8)
C220.0384 (14)0.0265 (11)0.0201 (10)−0.0044 (10)0.0020 (10)0.0042 (8)
C230.0323 (12)0.0293 (11)0.0200 (10)−0.0031 (9)0.0064 (9)0.0007 (8)
C240.0270 (12)0.0225 (9)0.0226 (11)−0.0011 (8)0.0054 (9)0.0004 (8)
O10.0299 (9)0.0235 (8)0.0325 (9)−0.0059 (6)0.0108 (8)−0.0035 (6)
P10.0227 (3)0.0161 (2)0.0186 (2)−0.00069 (19)0.00337 (19)0.00047 (18)
S10.0342 (3)0.0220 (3)0.0294 (3)−0.0054 (2)0.0047 (2)−0.0052 (2)

Geometric parameters (Å, °)

C1—C21.369 (4)C13—C141.392 (4)
C1—S11.712 (3)C13—C181.398 (3)
C1—H10.93C13—P11.812 (2)
C2—C31.434 (3)C14—C151.394 (4)
C2—H20.93C14—H140.93
C3—C41.375 (3)C15—C161.392 (4)
C3—H30.93C15—H150.93
C4—C51.494 (3)C16—C171.392 (4)
C4—S11.719 (2)C16—H160.93
C5—O11.258 (3)C17—C181.388 (4)
C5—C61.403 (3)C17—H170.93
C6—P11.727 (2)C18—H180.93
C6—H60.93C19—C241.388 (3)
C7—C121.399 (3)C19—C201.401 (3)
C7—C81.403 (3)C19—P11.816 (2)
C7—P11.806 (2)C20—C211.396 (3)
C8—C91.393 (4)C20—H200.93
C8—H80.93C21—C221.391 (4)
C9—C101.398 (4)C21—H210.93
C9—H90.93C22—C231.377 (4)
C10—C111.391 (4)C22—H220.93
C10—H100.93C23—C241.401 (3)
C11—C121.391 (3)C23—H230.93
C11—H110.93C24—H240.93
C12—H120.93
C2—C1—S1112.04 (18)C13—C14—H14120.1
C2—C1—H1124C15—C14—H14120.1
S1—C1—H1124C16—C15—C14120.1 (3)
C1—C2—C3112.4 (2)C16—C15—H15120
C1—C2—H2123.8C14—C15—H15120
C3—C2—H2123.8C17—C16—C15120.1 (2)
C4—C3—C2111.7 (2)C17—C16—H16119.9
C4—C3—H3124.1C15—C16—H16119.9
C2—C3—H3124.1C18—C17—C16120.0 (2)
C3—C4—C5130.7 (2)C18—C17—H17120
C3—C4—S1111.94 (17)C16—C17—H17120
C5—C4—S1117.31 (17)C17—C18—C13119.9 (3)
O1—C5—C6123.4 (2)C17—C18—H18120.1
O1—C5—C4118.1 (2)C13—C18—H18120.1
C6—C5—C4118.5 (2)C24—C19—C20120.0 (2)
C5—C6—P1118.30 (16)C24—C19—P1121.98 (18)
C5—C6—H6120.9C20—C19—P1117.98 (16)
P1—C6—H6120.9C21—C20—C19119.6 (2)
C12—C7—C8119.4 (2)C21—C20—H20120.2
C12—C7—P1123.35 (16)C19—C20—H20120.2
C8—C7—P1117.22 (19)C22—C21—C20120.0 (2)
C9—C8—C7120.4 (2)C22—C21—H21120
C9—C8—H8119.8C20—C21—H21120
C7—C8—H8119.8C23—C22—C21120.3 (2)
C8—C9—C10119.7 (2)C23—C22—H22119.9
C8—C9—H9120.2C21—C22—H22119.9
C10—C9—H9120.2C22—C23—C24120.3 (2)
C11—C10—C9120.1 (2)C22—C23—H23119.9
C11—C10—H10120C24—C23—H23119.9
C9—C10—H10120C19—C24—C23119.7 (2)
C12—C11—C10120.4 (2)C19—C24—H24120.1
C12—C11—H11119.8C23—C24—H24120.1
C10—C11—H11119.8C6—P1—C7106.06 (10)
C11—C12—C7120.0 (2)C6—P1—C13117.09 (12)
C11—C12—H12120C7—P1—C13106.16 (10)
C7—C12—H12120C6—P1—C19112.72 (10)
C14—C13—C18120.2 (2)C7—P1—C19108.67 (10)
C14—C13—P1121.02 (17)C13—P1—C19105.74 (10)
C18—C13—P1118.8 (2)C1—S1—C491.86 (13)
C13—C14—C15119.7 (2)
S1—C1—C2—C3−0.8 (3)C20—C21—C22—C231.3 (4)
C1—C2—C3—C40.4 (3)C21—C22—C23—C240.2 (4)
C2—C3—C4—C5−178.7 (2)C20—C19—C24—C230.3 (3)
C2—C3—C4—S10.2 (3)P1—C19—C24—C23−178.83 (18)
C3—C4—C5—O1−177.3 (3)C22—C23—C24—C19−1.0 (4)
S1—C4—C5—O13.9 (3)C5—C6—P1—C7−170.32 (19)
C3—C4—C5—C63.8 (4)C5—C6—P1—C1371.5 (2)
S1—C4—C5—C6−175.02 (18)C5—C6—P1—C19−51.5 (2)
O1—C5—C6—P1−9.7 (3)C12—C7—P1—C6115.89 (19)
C4—C5—C6—P1169.12 (17)C8—C7—P1—C6−61.6 (2)
C12—C7—C8—C9−1.7 (3)C12—C7—P1—C13−118.89 (19)
P1—C7—C8—C9175.91 (17)C8—C7—P1—C1363.60 (19)
C7—C8—C9—C100.7 (3)C12—C7—P1—C19−5.6 (2)
C8—C9—C10—C110.6 (4)C8—C7—P1—C19176.93 (17)
C9—C10—C11—C12−0.8 (4)C14—C13—P1—C6−23.8 (2)
C10—C11—C12—C7−0.2 (3)C18—C13—P1—C6158.29 (17)
C8—C7—C12—C111.5 (3)C14—C13—P1—C7−141.96 (18)
P1—C7—C12—C11−176.01 (18)C18—C13—P1—C740.1 (2)
C18—C13—C14—C150.8 (3)C14—C13—P1—C19102.69 (19)
P1—C13—C14—C15−177.07 (18)C18—C13—P1—C19−75.2 (2)
C13—C14—C15—C16−0.1 (4)C24—C19—P1—C6131.09 (19)
C14—C15—C16—C17−0.2 (4)C20—C19—P1—C6−48.1 (2)
C15—C16—C17—C180.0 (4)C24—C19—P1—C7−111.6 (2)
C16—C17—C18—C130.7 (4)C20—C19—P1—C769.2 (2)
C14—C13—C18—C17−1.1 (3)C24—C19—P1—C132.0 (2)
P1—C13—C18—C17176.84 (18)C20—C19—P1—C13−177.19 (18)
C24—C19—C20—C211.2 (4)C2—C1—S1—C40.7 (2)
P1—C19—C20—C21−179.61 (18)C3—C4—S1—C1−0.5 (2)
C19—C20—C21—C22−2.0 (4)C5—C4—S1—C1178.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.343.147 (3)145
C14—H14···O10.932.523.187 (3)129
C3—H3···Cg1ii0.932.823.582 (3)140
C8—H8···Cg2ii0.932.803.592 (2)143
C10—H10···Cg2i0.932.953.734 (3)143
C23—H23···Cg3iii0.932.823.465 (3)127

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x, −y, z+1/2; (iii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2064).

References

  • Allen, F. H., Kennard, O., Waston, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bart, J. C. J. (1969). J. Chem. Soc. B, pp. 350–365.
  • Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules Ithaca: Cornell University Press.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-RED32, X-AREA and X-SHAPE Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography