PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m599–m600.
Published online 2008 March 29. doi:  10.1107/S1600536808007939
PMCID: PMC2960937

[(2S)-2-(3,5-Dichloro-2-oxidobenzyl­ideneamino)-3-(4-hydroxy­phen­yl)propionato-κ3 O,N,O′](dimethyl­formamide-κO)copper(II)

Abstract

In the title complex, [Cu(C16H11Cl2NO4)(C3H7NO)] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L 2− {LH2 = (2S)-[2-(3,5-dichloro-2-hydroxy­benzyl­idene)­imino]-3-(4-hydroxy­phenyl)propionic acid} and one O atom from a dimethyl­formamide mol­ecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu(...)O 3.080 (1), Cu(...)Cl 3.269 (1) Å] and a three-dimensional network through O—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For related structures, see: Li et al. (2008 [triangle]); Zhang, Li et al. (2007 [triangle]); Zhang, Feng et al. (2007a [triangle],b [triangle]). For related literature, see: Xia et al. (2007 [triangle]); Liu et al. (2007 [triangle]); Cohen et al. (1964 [triangle]); Desiraju (1989 [triangle]); Zordan et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m599-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H11Cl2NO4)(C3H7NO)]
  • M r = 488.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m599-efi1.jpg
  • a = 5.8646 (16) Å
  • b = 13.220 (2) Å
  • c = 26.850 (3) Å
  • V = 2081.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 298 (2) K
  • 0.48 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.532, T max = 0.786
  • 10650 measured reflections
  • 3638 independent reflections
  • 2915 reflections with I > 2σ(I)
  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.148
  • S = 1.04
  • 3638 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.54 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1505 Friedel pairs
  • Flack parameter: 0.04 (3)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007939/rt2016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007939/rt2016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the NSFC (grant No. 20561001) and the EDF of Guangxi (grant No. 200607LX067).

supplementary crystallographic information

Comment

Halogens have a ubiquitous presence in both inorganic and organic chemistry, serving as mondentate or bridging ligands for a wide variety of d-block, f-block, and main group metals as well being common substituents in a large number of organic compounds. Most frequently they lie at the periphery of molecules. The resultant steric accessibility has the potential for halogenated compounds to be attractive targets for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in intermolecular interactions. Indeed, interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the chloro effect, wherein the presence of chloro substituents on aromatic compounds frequently resulted in stacking arrangements with a resultant short (ca 4 Å) crystallographic axis. (Cohen et al., 1964; Zordan et al., 2005; Cohen et al., 1964; Desiraju, 1989; Zhang, Li et al., 2007). Herein, we chose LH2 as ligand system, and obtained a new mononuclear copper complex [Cu(L)(C3H7NO)] (1).

The title compound, (I), is a chiral CuII complex containing a dimethylformamide and a chiral ligand constructed from 3,5-Dichloro-2-hydroxy-benzaldehyde and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid. The asymmetric unit of (I) shows a complex consisting of one CuII atom, one L2- ligand and one dimethylformamide (Fig. 1). The Cu atom is coordinated by two oxygen atoms and one N atom from one tridentate L2- ligand, to yield a slightly distorted planar geometry with bond lengths Cu1—O1, Cu1—O4, Cu1—O5 and Cu1—N1 1.931 (5), 1.875 (5), 1.954 (4) and 1.934 (5) Å, respectively; and bond angles (cis-angles are in the range of 84.5 (2)–91.9 (2) °, but all trans-angles are 169.0 (2)–174.3 (2) °) (Table 2).

As expected, all other bond distances and angles are within normal range. The structure forms a one-dimensional chain (Fig. 2) through weak coordination bonds (Cu1—O2i, 3.080 (1) Å, Cu1—Cl1ii, 3.269 (1) Å, symmetry codes: i: 1 + x, y, z; ii: -1 + x, y, z) and a three-dimensional network via weak hydrogen bonds: (O3—H3···O2i, 2.661 (7) Å, symmetry codes: i: 1 - x, 1/2 + y, 3/2 - z) and C—H···O hydrogen bond (C17—H17···O4, 2.743 (8) Å, C18—H18B···O1ii, 2.536 (4) Å, symmetry code: ii: 1/2 + x,-1/2 - y,2 - z) (Fig. 3).

Experimental

3,5-Dichloro-2-hydroxy-benzaldehyde(0.382 g, 2.0 mmol) and 2-Amino-3-(4-hydroxy-phenyl)-propionic acid (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to yield a yellow solution. To this was added a solution of CuSO4.5H2O (0.5 g, 2 mmol) in a mixture of 2 ml DMF and 10 ml me thanol. The mixture was refluxed for 1 h, and then the blue solution was filtered. Blue single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature. Yield: 89.6% (based on Copper). Elemental analysis for [Cu(C16H11Cl2NO4)(C3H7NO)] calculated: C 46.69, H 3.71, N 5.73%; found: C 46.61, H 3.84, N 5.67%.

Refinement

All hydrogen atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) or 0.93 Å (aromatic rings), and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq(CH3), O—H distance: 0.82 Å with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. hydrogen atoms have been omitted.
Fig. 2.
one-dimensional chain of (I).
Fig. 3.
The three-dimensional network of (I) through hydrogen bonds.

Crystal data

[Cu(C16H11Cl2NO4)(C3H7NO)]F000 = 996
Mr = 488.79Dx = 1.560 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4089 reflections
a = 5.8646 (16) Åθ = 2.3–23.8º
b = 13.220 (2) ŵ = 1.34 mm1
c = 26.850 (3) ÅT = 298 (2) K
V = 2081.7 (7) Å3Prism, blue
Z = 40.48 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer3638 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.098
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.532, Tmax = 0.786k = −15→12
10650 measured reflectionsl = −31→31

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061  w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
3638 reflectionsΔρmin = −0.54 e Å3
262 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1505 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.04 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.87095 (14)0.01109 (5)0.92554 (2)0.0398 (2)
Cl11.5356 (3)0.15751 (14)0.99080 (6)0.0542 (5)
Cl21.5314 (5)0.4447 (2)0.84884 (10)0.1123 (10)
N10.7954 (8)0.0937 (4)0.86843 (16)0.0341 (12)
N21.2035 (10)−0.1364 (5)1.03525 (19)0.0502 (15)
O10.5867 (8)−0.0565 (3)0.91109 (13)0.0447 (11)
O20.2837 (8)−0.0471 (4)0.86065 (16)0.0507 (12)
O30.9847 (9)0.2916 (4)0.64815 (17)0.0663 (15)
H30.88570.33350.64200.099*
O41.1115 (8)0.0946 (3)0.94609 (13)0.0426 (10)
O50.9417 (9)−0.0841 (4)0.97899 (16)0.0566 (14)
C10.4783 (12)−0.0227 (4)0.8738 (2)0.0371 (14)
C20.5969 (10)0.0579 (4)0.84153 (18)0.0335 (13)
H20.49210.11450.83570.040*
C30.6629 (11)0.0092 (4)0.79128 (18)0.0413 (15)
H3A0.7794−0.04160.79710.050*
H3B0.5305−0.02490.77760.050*
C40.7505 (11)0.0844 (5)0.7537 (2)0.0390 (15)
C50.6177 (12)0.1646 (5)0.7384 (2)0.0470 (16)
H50.47400.17260.75250.056*
C60.6887 (12)0.2333 (5)0.7032 (2)0.0478 (18)
H60.59190.28500.69300.057*
C70.9055 (11)0.2249 (5)0.6832 (2)0.0436 (16)
C81.0373 (13)0.1453 (5)0.6970 (2)0.0552 (18)
H81.17930.13690.68220.066*
C90.9657 (12)0.0762 (5)0.7326 (2)0.0477 (17)
H91.06250.02410.74240.057*
C100.8988 (10)0.1759 (4)0.85633 (19)0.0335 (13)
H100.83730.21300.83010.040*
C111.1005 (11)0.2157 (4)0.87951 (19)0.0367 (14)
C121.1995 (9)0.1712 (4)0.9226 (2)0.0346 (13)
C131.4061 (11)0.2142 (5)0.93978 (19)0.0372 (14)
C141.5016 (12)0.2978 (5)0.9188 (2)0.0527 (18)
H141.63340.32590.93220.063*
C151.4005 (14)0.3402 (5)0.8774 (3)0.062 (2)
C161.2032 (12)0.3018 (5)0.8584 (3)0.0508 (18)
H161.13540.33290.83110.061*
C171.1375 (15)−0.0875 (5)0.9947 (3)0.0558 (18)
H171.2486−0.05310.97670.067*
C181.0416 (14)−0.1899 (7)1.0655 (3)0.073 (2)
H18A1.0066−0.15051.09450.110*
H18B1.1053−0.25371.07540.110*
H18C0.9048−0.20131.04670.110*
C191.4387 (14)−0.1337 (7)1.0521 (3)0.078 (3)
H19A1.5335−0.10671.02610.118*
H19B1.4881−0.20101.06010.118*
H19C1.4502−0.09171.08110.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0472 (4)0.0363 (4)0.0360 (3)−0.0017 (4)−0.0031 (3)0.0056 (3)
Cl10.0510 (10)0.0635 (11)0.0481 (8)0.0039 (9)−0.0144 (7)−0.0136 (8)
Cl20.117 (2)0.0863 (18)0.133 (2)−0.0606 (17)−0.0291 (18)0.0441 (15)
N10.037 (3)0.031 (3)0.034 (2)0.009 (2)0.001 (2)−0.002 (2)
N20.045 (3)0.056 (4)0.050 (3)0.007 (3)−0.001 (3)0.022 (3)
O10.056 (3)0.039 (2)0.039 (2)−0.010 (2)0.001 (2)0.0045 (17)
O20.043 (3)0.048 (3)0.060 (3)−0.008 (2)0.004 (2)−0.009 (2)
O30.070 (4)0.058 (3)0.071 (3)0.012 (3)0.034 (3)0.015 (3)
O40.047 (3)0.045 (2)0.0357 (19)0.005 (2)−0.003 (2)−0.0015 (18)
O50.060 (4)0.055 (3)0.055 (3)0.002 (3)−0.006 (2)0.024 (2)
C10.043 (4)0.027 (3)0.041 (3)0.003 (3)0.001 (3)−0.007 (3)
C20.024 (3)0.040 (3)0.037 (3)0.000 (3)−0.005 (3)−0.004 (2)
C30.049 (4)0.039 (3)0.036 (3)−0.003 (4)−0.003 (3)−0.005 (3)
C40.043 (4)0.040 (4)0.034 (3)0.005 (3)−0.007 (3)−0.003 (3)
C50.036 (3)0.067 (4)0.038 (3)0.007 (4)0.003 (3)0.005 (3)
C60.046 (4)0.050 (4)0.047 (4)0.015 (3)0.003 (3)0.007 (3)
C70.043 (4)0.051 (4)0.037 (3)0.004 (4)0.005 (3)0.001 (3)
C80.048 (4)0.062 (5)0.056 (4)0.010 (4)0.014 (3)0.007 (3)
C90.041 (4)0.046 (4)0.056 (4)0.009 (3)0.007 (3)−0.006 (3)
C100.032 (3)0.034 (3)0.034 (3)−0.001 (3)0.000 (3)0.001 (2)
C110.038 (4)0.035 (3)0.037 (3)0.001 (3)0.004 (3)−0.001 (2)
C120.027 (3)0.036 (3)0.041 (3)0.005 (3)0.006 (3)−0.017 (3)
C130.035 (4)0.045 (4)0.032 (3)0.003 (3)0.001 (3)−0.013 (2)
C140.045 (4)0.052 (4)0.061 (4)−0.010 (4)−0.005 (4)−0.015 (3)
C150.060 (5)0.052 (4)0.073 (5)−0.013 (4)−0.001 (4)0.009 (4)
C160.050 (4)0.038 (4)0.064 (4)−0.012 (3)−0.002 (4)0.014 (3)
C170.055 (5)0.048 (4)0.065 (4)0.009 (4)0.001 (4)0.021 (3)
C180.063 (5)0.093 (6)0.064 (5)0.001 (5)0.003 (4)0.038 (4)
C190.055 (5)0.092 (7)0.088 (5)0.003 (5)−0.017 (4)0.037 (5)

Geometric parameters (Å, °)

Cu1—O41.875 (5)C5—C61.374 (9)
Cu1—O11.931 (5)C5—H50.9300
Cu1—N11.934 (5)C6—C71.385 (9)
Cu1—O51.954 (4)C6—H60.9300
Cl1—C131.736 (6)C7—C81.357 (9)
Cl2—C151.756 (7)C8—C91.387 (9)
N1—C101.286 (7)C8—H80.9300
N1—C21.449 (7)C9—H90.9300
N2—C171.324 (8)C10—C111.437 (8)
N2—C181.435 (9)C10—H100.9300
N2—C191.452 (9)C11—C161.407 (8)
O1—C11.267 (7)C11—C121.423 (8)
O2—C11.238 (7)C12—C131.416 (8)
O3—C71.371 (7)C13—C141.361 (9)
O3—H30.8200C14—C151.379 (10)
O4—C121.299 (7)C14—H140.9300
O5—C171.224 (9)C15—C161.362 (10)
C1—C21.540 (8)C16—H160.9300
C2—C31.545 (7)C17—H170.9300
C2—H20.9800C18—H18A0.9600
C3—C41.508 (8)C18—H18B0.9600
C3—H3A0.9700C18—H18C0.9600
C3—H3B0.9700C19—H19A0.9600
C4—C51.378 (9)C19—H19B0.9600
C4—C91.387 (9)C19—H19C0.9600
O4—Cu1—O1169.0 (2)C7—C8—C9121.8 (7)
O4—Cu1—N194.2 (2)C7—C8—H8119.1
O1—Cu1—N184.5 (2)C9—C8—H8119.1
O4—Cu1—O590.2 (2)C4—C9—C8120.3 (7)
O1—Cu1—O591.9 (2)C4—C9—H9119.9
N1—Cu1—O5174.3 (2)C8—C9—H9119.9
C10—N1—C2121.9 (5)N1—C10—C11126.1 (5)
C10—N1—Cu1124.7 (4)N1—C10—H10117.0
C2—N1—Cu1113.3 (4)C11—C10—H10117.0
C17—N2—C18120.8 (6)C16—C11—C12119.2 (6)
C17—N2—C19121.4 (7)C16—C11—C10118.3 (5)
C18—N2—C19117.7 (6)C12—C11—C10122.5 (5)
C1—O1—Cu1115.4 (4)O4—C12—C13119.7 (5)
C7—O3—H3109.5O4—C12—C11123.7 (5)
C12—O4—Cu1128.0 (4)C13—C12—C11116.6 (6)
C17—O5—Cu1118.4 (5)C14—C13—C12122.9 (6)
O2—C1—O1126.6 (6)C14—C13—Cl1119.8 (5)
O2—C1—C2115.8 (5)C12—C13—Cl1117.2 (5)
O1—C1—C2117.6 (5)C13—C14—C15119.2 (7)
N1—C2—C1107.9 (4)C13—C14—H14120.4
N1—C2—C3111.7 (5)C15—C14—H14120.4
C1—C2—C3108.4 (5)C16—C15—C14121.0 (7)
N1—C2—H2109.6C16—C15—Cl2120.1 (6)
C1—C2—H2109.6C14—C15—Cl2118.9 (6)
C3—C2—H2109.6C15—C16—C11121.0 (7)
C4—C3—C2113.3 (5)C15—C16—H16119.5
C4—C3—H3A108.9C11—C16—H16119.5
C2—C3—H3A108.9O5—C17—N2125.2 (7)
C4—C3—H3B108.9O5—C17—H17117.4
C2—C3—H3B108.9N2—C17—H17117.4
H3A—C3—H3B107.7N2—C18—H18A109.5
C5—C4—C9117.0 (6)N2—C18—H18B109.5
C5—C4—C3121.0 (6)H18A—C18—H18B109.5
C9—C4—C3122.1 (6)N2—C18—H18C109.5
C6—C5—C4122.8 (7)H18A—C18—H18C109.5
C6—C5—H5118.6H18B—C18—H18C109.5
C4—C5—H5118.6N2—C19—H19A109.5
C5—C6—C7119.4 (6)N2—C19—H19B109.5
C5—C6—H6120.3H19A—C19—H19B109.5
C7—C6—H6120.3N2—C19—H19C109.5
C8—C7—O3119.5 (6)H19A—C19—H19C109.5
C8—C7—C6118.6 (6)H19B—C19—H19C109.5
O3—C7—C6121.7 (6)
O4—Cu1—N1—C10−0.5 (5)O3—C7—C8—C9179.5 (6)
O1—Cu1—N1—C10168.5 (5)C6—C7—C8—C9−3.9 (11)
O4—Cu1—N1—C2−176.4 (4)C5—C4—C9—C8−1.5 (10)
O1—Cu1—N1—C2−7.4 (3)C3—C4—C9—C8178.0 (6)
O4—Cu1—O1—C183.8 (9)C7—C8—C9—C42.9 (11)
N1—Cu1—O1—C10.1 (4)C2—N1—C10—C11−177.8 (5)
O5—Cu1—O1—C1−175.4 (4)Cu1—N1—C10—C116.6 (8)
O1—Cu1—O4—C12−90.9 (9)N1—C10—C11—C16174.1 (6)
N1—Cu1—O4—C12−8.1 (5)N1—C10—C11—C12−5.7 (9)
O5—Cu1—O4—C12168.2 (5)Cu1—O4—C12—C13−168.8 (4)
O4—Cu1—O5—C17−26.4 (6)Cu1—O4—C12—C1110.8 (8)
O1—Cu1—O5—C17164.4 (6)C16—C11—C12—O4176.7 (5)
Cu1—O1—C1—O2−172.3 (5)C10—C11—C12—O4−3.5 (8)
Cu1—O1—C1—C27.0 (6)C16—C11—C12—C13−3.7 (8)
C10—N1—C2—C1−164.2 (5)C10—C11—C12—C13176.1 (5)
Cu1—N1—C2—C111.9 (5)O4—C12—C13—C14−176.3 (5)
C10—N1—C2—C376.7 (7)C11—C12—C13—C144.1 (8)
Cu1—N1—C2—C3−107.2 (4)O4—C12—C13—Cl12.3 (7)
O2—C1—C2—N1166.9 (5)C11—C12—C13—Cl1−177.3 (4)
O1—C1—C2—N1−12.5 (7)C12—C13—C14—C15−3.4 (10)
O2—C1—C2—C3−71.9 (6)Cl1—C13—C14—C15178.1 (5)
O1—C1—C2—C3108.7 (5)C13—C14—C15—C162.2 (11)
N1—C2—C3—C4−69.3 (6)C13—C14—C15—Cl2−177.3 (5)
C1—C2—C3—C4171.9 (5)C14—C15—C16—C11−2.0 (11)
C2—C3—C4—C5−59.0 (7)Cl2—C15—C16—C11177.5 (6)
C2—C3—C4—C9121.5 (6)C12—C11—C16—C152.8 (10)
C9—C4—C5—C61.3 (10)C10—C11—C16—C15−177.0 (6)
C3—C4—C5—C6−178.2 (6)Cu1—O5—C17—N2169.3 (5)
C4—C5—C6—C7−2.4 (10)C18—N2—C17—O5−1.1 (12)
C5—C6—C7—C83.6 (10)C19—N2—C17—O5−178.0 (8)
C5—C6—C7—O3−179.8 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.872.661 (7)163
C17—H17···O40.932.272.743 (8)111
C18—H18B···O1ii0.962.543.421 (10)150

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x+1/2, −y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2016).

References

  • Bruker (2001). SAINT and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Cohen, M. D., Schmidt, G. M. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52. [PMC free article] [PubMed]
  • Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.
  • Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  • Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc.127, 5979–5989. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography