PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m595–m596.
Published online 2008 March 29. doi:  10.1107/S1600536808007782
PMCID: PMC2960932

Dioxidobis(2-oxo-1,2-dihydropyridin-3-olato)­molybdenum(VI)

Abstract

In the title compound, [Mo(C5H4NO2)2O2], the MoVI atom exhibits a distorted octa­hedral coordination geometry formed by two terminal oxo ligands and two monoanionic O,O-bidentate pyridinone ligands. The two terminal oxo ligands lie in a cis arrangement, the ketonic O atoms of the pyridinone ligands are coordinated trans to the oxo ligands and the deprotonated hydroxyl O atoms are located trans to each other. The crystal structure contains inter­molecular N—H(...)O hydrogen bonds, C—H(...)O contacts and face-to-face π–π stacking inter­actions with an inter­planar separation of 3.25 (1) Å.

Related literature

For general background, see: Veiros et al. (2006 [triangle]); Tucci et al. (1998 [triangle]); Collison et al. (1996 [triangle]); Hille (1996 [triangle]). For related structures, see: Brown et al. (2004 [triangle]); Hanna et al. (2000 [triangle]); Thompson et al. (1999 [triangle]); Zhang et al. (1992 [triangle]). For related literature, see: Braga et al. (1997 [triangle]); Grasselli (1999 [triangle]); Hozba et al. (1997 [triangle]); Ranganathan et al. (1998 [triangle]); Schrock (1998 [triangle]); Schultz et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m595-scheme1.jpg

Experimental

Crystal data

  • [Mo(C5H4NO2)2O2]
  • M r = 348.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m595-efi1.jpg
  • a = 13.263 (3) Å
  • b = 7.2470 (14) Å
  • c = 13.264 (3) Å
  • β = 118.540 (9)°
  • V = 1120.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 100 (2) K
  • 0.29 × 0.16 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.723, T max = 0.899
  • 37847 measured reflections
  • 3123 independent reflections
  • 2772 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.058
  • S = 1.08
  • 3123 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007782/bi2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007782/bi2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Council of Scientific and Industrial Research, New Delhi. We also thank the Head, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi. We acknowledge funding from the National Science Foundation (CHE0420497) for the purchase of the APEXII diffractometer.

supplementary crystallographic information

Comment

There has been growing interest in the study of MoVI complexes because of their biochemical significance (Collison et al., 1996; Hille, 1996). For example, dioxomolybdenum(VI) complexes are studied as models for oxidized forms of molybdoenzymes, e.g. aldehyde oxidase and sulfite oxidase which are supposed to contain cis-MoX2 units (X = O,S) coordinated to S, N and O donor atoms of the protein structure (Tucci et al., 1998; Schultz et al., 1993). The present view of these enzymes indicates that the formal oxidation state of Mo cycles between +4 and +6 in reactions with substrate and oxidant. The two electron O atom transfer seems to be the relevant mechanism in understanding the chemical role of enzymatic reactions. A large number of important chemical reactions are catalysed by MoVI complexes. Several industrial processes such as ammoxidation of propene to acrylonitrile (Grasselli, 1999), olefin epoxidation (Veiros et al., 2006) and olefin metathesis (Schrock, 1998) reactions are carried out over Mo catalysts.

In the title compound, the coordination sphere about the MoVI atom consists of six O atoms arranged in a distorted octahedral geometry (Fig. 1 and Table 1). There is a cis arrangement of dioxo ligands, as predicted by spectroscopic and other structural data. The O=Mo=O angle is 103.48 (7) and the Mo=O distances are 1.706 (15) and 1.712 (16) Å [average 1.709 (15) Å], comparable to those found in other cis-dioxomolybdenum(VI) complexes (Hanna et al., 2000; Brown et al., 2004). The two ketonic O atoms of the pyridinone ligands are trans to the oxo ligands and the stronger field hydroxyl O atoms are trans to one another. As expected, a slight lengthening of the ketone C=O bond is observed upon complexation, with a mean distance of 1.272 (2) Å, and the Mo—O(ketone) bonds [average 2.188 (15) Å] are somewhat longer than the Mo—O(hydroxyl) distances [average 1.988 (14) Å]. A pronounced localization of the formal double bonds in the pyridinone rings is clearly indicated by the short C1—C2 and C9—C10 bonds [average 1.360 (3) Å], long C4—C5 and C6—C7 bonds [average 1.425 (3) Å], and short ketone C5—O2 and C6—O4 [average 1.272 (2) Å] bonds. Resonance forms for pyridinone ligands have been described in detail elsewhere (Thompson et al., 1999; Zhang et al., 1992).

The NH and CH groups of the pyridinone ligands form a hydrogen bond with an oxo ligand attached to Mo in a neighbouring molecule (Table 2) (Braga et al., 1997). Repetition of this hydrogen bond generates parallel chains along the b axis (Fig. 2). There are face-to-face π–π stacking interactions involving the pyridinone rings of adjacent pyridinone molecules, with π–π distances of 3.295–3.389 Å (Fig. 3) (Ranganathan et al., 1998; Hozba et al., 1997). One potential driving force for alignment of the motifs might be the N···O interactions (N···O distance = 2.904 Å) that exists between adjacent motifs, resulting in a columnar architecture with a dimension of 7.2 × 6.7 Å (Fig. 4).

Experimental

The title compound was prepared by suspension of 2,3-pyridinediol (0.111 g, 1 mmol) in methanol (30 ml), followed by addition of KOH (0.112 g, 2 mmol). Stirring at room temperature for 30 min gave a clear red solution. This solution was treated with (NH4)2Mo2O7 (0.170 g, 0.50 mmol) and stirred overnight. The resulting orange-red solution was filtered and allowed to cool at room temperature. Over a couple of days, orange irregular needle-shaped diffraction-quality crystals separated, which were isolated and dried in air.

Refinement

All H atoms were added in calculated positions and were refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms
Fig. 2.
Parallel chains made through intermolecular N—H···O and C—H···O hydrogen-bond interactions (dashed lines)
Fig. 3.
Face-to-face π-π interactions
Fig. 4.
Views along the a axis

Crystal data

[Mo(C5H4NO2)2O2]F000 = 688
Mr = 348.12Dx = 2.065 Mg m3Dm = no Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9899 reflections
a = 13.263 (3) Åθ = 1.8–29.6º
b = 7.2470 (14) ŵ = 1.20 mm1
c = 13.264 (3) ÅT = 100 (2) K
β = 118.540 (9)ºNeedle, orange
V = 1120.0 (4) Å30.29 × 0.16 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3123 independent reflections
Radiation source: fine-focus sealed tube2772 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 100(2) Kθmax = 29.6º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)h = −18→18
Tmin = 0.723, Tmax = 0.899k = −10→10
37847 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.058  w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1984P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3123 reflectionsΔρmax = 0.70 e Å3
172 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.248605 (14)0.91497 (2)0.414412 (14)0.01513 (6)
O10.08144 (11)0.8541 (2)0.33241 (11)0.0172 (3)
O20.20602 (12)0.8648 (2)0.55242 (12)0.0176 (3)
O30.40951 (12)0.8995 (2)0.53830 (12)0.0173 (3)
O40.27660 (12)0.6185 (2)0.44705 (12)0.0177 (3)
O50.25461 (12)0.8903 (2)0.28946 (12)0.0196 (3)
O60.25285 (12)1.1491 (2)0.43339 (12)0.0204 (3)
N10.06163 (14)0.7521 (2)0.58314 (14)0.0166 (3)
H1N0.10750.75160.65780.020*
N20.41302 (15)0.4130 (2)0.56670 (15)0.0181 (3)
H2N0.36550.32010.53470.022*
C1−0.04904 (17)0.6950 (3)0.54263 (18)0.0185 (4)
H1−0.07540.65480.59420.022*
C2−0.12129 (17)0.6964 (3)0.42750 (18)0.0206 (4)
H2−0.19890.65940.39870.025*
C3−0.08198 (17)0.7519 (3)0.35098 (17)0.0189 (4)
H3−0.13250.75260.27060.023*
C40.02965 (17)0.8049 (3)0.39344 (16)0.0160 (4)
C50.10352 (16)0.8086 (3)0.51457 (16)0.0148 (4)
C60.37661 (17)0.5850 (3)0.52910 (16)0.0157 (4)
C70.45352 (17)0.7346 (3)0.58207 (16)0.0166 (4)
C80.56213 (17)0.7023 (3)0.66842 (17)0.0203 (4)
H80.61400.80160.70370.024*
C90.59590 (18)0.5190 (3)0.70425 (18)0.0231 (5)
H90.67100.49410.76450.028*
C100.52126 (18)0.3776 (3)0.65289 (18)0.0218 (4)
H100.54440.25420.67700.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.01552 (9)0.01402 (9)0.01085 (9)0.00111 (6)0.00226 (6)0.00057 (6)
O10.0157 (6)0.0197 (7)0.0102 (6)0.0007 (6)0.0014 (5)0.0007 (5)
O20.0159 (6)0.0189 (7)0.0120 (6)−0.0009 (6)0.0019 (5)−0.0005 (5)
O30.0148 (6)0.0167 (7)0.0146 (7)−0.0010 (5)0.0023 (5)0.0004 (5)
O40.0166 (6)0.0152 (7)0.0150 (7)0.0016 (5)0.0025 (5)0.0001 (5)
O50.0200 (7)0.0226 (8)0.0122 (7)0.0020 (6)0.0045 (6)0.0012 (6)
O60.0233 (7)0.0158 (7)0.0198 (7)0.0012 (6)0.0084 (6)0.0010 (6)
N10.0181 (8)0.0156 (8)0.0113 (7)0.0011 (7)0.0031 (6)−0.0005 (7)
N20.0213 (8)0.0172 (8)0.0168 (8)0.0037 (7)0.0099 (7)0.0026 (7)
C10.0205 (10)0.0137 (9)0.0201 (10)0.0017 (8)0.0086 (8)−0.0009 (8)
C20.0162 (9)0.0193 (10)0.0217 (10)0.0000 (8)0.0053 (8)−0.0043 (8)
C30.0155 (9)0.0184 (10)0.0143 (9)0.0021 (8)0.0003 (7)−0.0031 (8)
C40.0183 (9)0.0122 (9)0.0120 (9)0.0028 (7)0.0028 (7)−0.0011 (7)
C50.0166 (9)0.0089 (8)0.0131 (9)0.0017 (7)0.0025 (7)−0.0016 (7)
C60.0168 (9)0.0183 (10)0.0117 (9)0.0024 (8)0.0066 (7)0.0016 (7)
C70.0172 (9)0.0209 (10)0.0112 (9)0.0016 (8)0.0065 (7)0.0003 (8)
C80.0168 (9)0.0312 (12)0.0114 (9)0.0001 (8)0.0055 (8)0.0001 (8)
C90.0178 (9)0.0384 (13)0.0115 (9)0.0088 (9)0.0057 (8)0.0072 (9)
C100.0236 (10)0.0270 (11)0.0158 (10)0.0114 (9)0.0103 (8)0.0091 (8)

Geometric parameters (Å, °)

Mo1—O11.9972 (14)N2—H2N0.880
Mo1—O22.1886 (15)C1—C21.361 (3)
Mo1—O31.9790 (14)C1—H10.950
Mo1—O42.1882 (15)C2—C31.403 (3)
Mo1—O51.7062 (15)C2—H20.950
Mo1—O61.7124 (16)C3—C41.364 (3)
O1—C41.336 (3)C3—H30.950
O2—C51.270 (2)C4—C51.427 (3)
O3—C71.335 (2)C6—C71.423 (3)
O4—C61.274 (2)C7—C81.366 (3)
N1—C51.337 (3)C8—C91.410 (3)
N1—C11.364 (3)C8—H80.950
N1—H1N0.880C9—C101.360 (3)
N2—C61.344 (3)C9—H90.950
N2—C101.366 (3)C10—H100.950
O5—Mo1—O6103.48 (7)C1—C2—C3120.52 (19)
O5—Mo1—O3105.57 (7)C1—C2—H2119.7
O6—Mo1—O389.27 (6)C3—C2—H2119.7
O5—Mo1—O190.16 (6)C4—C3—C2119.16 (18)
O6—Mo1—O1104.40 (6)C4—C3—H3120.4
O3—Mo1—O1156.33 (6)C2—C3—H3120.4
O5—Mo1—O490.40 (6)O1—C4—C3126.57 (18)
O6—Mo1—O4162.43 (6)O1—C4—C5113.69 (17)
O3—Mo1—O476.49 (6)C3—C4—C5119.74 (19)
O1—Mo1—O486.00 (6)O2—C5—N1122.93 (17)
O5—Mo1—O2161.00 (6)O2—C5—C4118.70 (18)
O6—Mo1—O292.59 (6)N1—C5—C4118.37 (18)
O3—Mo1—O284.43 (6)O4—C6—N2122.44 (19)
O1—Mo1—O275.87 (6)O4—C6—C7119.02 (18)
O4—Mo1—O276.04 (5)N2—C6—C7118.53 (18)
C4—O1—Mo1119.16 (12)O3—C7—C8125.8 (2)
C5—O2—Mo1112.20 (12)O3—C7—C6113.95 (17)
C7—O3—Mo1119.05 (12)C8—C7—C6120.3 (2)
C6—O4—Mo1111.40 (13)C7—C8—C9118.8 (2)
C5—N1—C1122.94 (17)C7—C8—H8120.6
C5—N1—H1N118.5C9—C8—H8120.6
C1—N1—H1N118.5C10—C9—C8120.20 (19)
C6—N2—C10122.19 (19)C10—C9—H9119.9
C6—N2—H2N118.9C8—C9—H9119.9
C10—N2—H2N118.9C9—C10—N2120.0 (2)
C2—C1—N1119.2 (2)C9—C10—H10120.0
C2—C1—H1120.4N2—C10—H10120.0
N1—C1—H1120.4
O5—Mo1—O1—C4162.99 (15)C2—C3—C4—O1177.13 (19)
O6—Mo1—O1—C4−93.04 (15)C2—C3—C4—C5−1.9 (3)
O3—Mo1—O1—C430.6 (2)Mo1—O2—C5—N1173.36 (15)
O4—Mo1—O1—C472.60 (14)Mo1—O2—C5—C4−6.4 (2)
O2—Mo1—O1—C4−3.99 (13)C1—N1—C5—O2178.72 (18)
O5—Mo1—O2—C5−38.2 (3)C1—N1—C5—C4−1.5 (3)
O6—Mo1—O2—C5109.76 (14)O1—C4—C5—O23.4 (3)
O3—Mo1—O2—C5−161.22 (14)C3—C4—C5—O2−177.45 (18)
O1—Mo1—O2—C55.55 (13)O1—C4—C5—N1−176.45 (17)
O4—Mo1—O2—C5−83.79 (13)C3—C4—C5—N12.7 (3)
O5—Mo1—O3—C7−88.95 (15)Mo1—O4—C6—N2178.53 (15)
O6—Mo1—O3—C7167.25 (15)Mo1—O4—C6—C7−2.4 (2)
O1—Mo1—O3—C741.0 (2)C10—N2—C6—O4178.42 (19)
O4—Mo1—O3—C7−2.36 (14)C10—N2—C6—C7−0.6 (3)
O2—Mo1—O3—C774.58 (14)Mo1—O3—C7—C8−179.11 (16)
O5—Mo1—O4—C6108.44 (14)Mo1—O3—C7—C61.9 (2)
O6—Mo1—O4—C6−34.2 (3)O4—C6—C7—O30.6 (3)
O3—Mo1—O4—C62.52 (13)N2—C6—C7—O3179.69 (17)
O1—Mo1—O4—C6−161.43 (14)O4—C6—C7—C8−178.48 (19)
O2—Mo1—O4—C6−85.01 (14)N2—C6—C7—C80.6 (3)
C5—N1—C1—C2−0.6 (3)O3—C7—C8—C9−179.41 (19)
N1—C1—C2—C31.4 (3)C6—C7—C8—C9−0.4 (3)
C1—C2—C3—C4−0.1 (3)C7—C8—C9—C100.3 (3)
Mo1—O1—C4—C3−177.08 (16)C8—C9—C10—N2−0.3 (3)
Mo1—O1—C4—C52.0 (2)C6—N2—C10—C90.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.882.162.900 (2)142
N2—H2N···O6ii0.881.912.776 (3)167
C3—H3···O6iii0.952.513.428 (3)162
C9—H9···O2iv0.952.383.235 (3)150

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y−1, z; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2282).

References

  • Braga, D., Grepioni, F. & Desiraju, G. R. (1997). J. Organomet. Chem.548, 33–43.
  • Brown, E. J., Whitwood, A. C., Walton, P. H. & Duhme-Klair, A.-K. (2004). Dalton Trans. pp. 2458–2462. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev.25, 25–32.
  • Grasselli, R. K. (1999). Catal. Today, 49, 141–153.
  • Hanna, T. A., Incarvito, C. D. & Rheingold, A. L. (2000). Inorg. Chem.39, 630–631. [PubMed]
  • Hille, R. (1996). Chem. Rev.96, 2757–2816. [PubMed]
  • Hozba, P., Kabelac, M., Sponer, J., Mejzlik, P. & Vondrasek, J. (1997). J. Comput. Chem.18, 1136–1150.
  • Ranganathan, D., Haridas, V., Gilardi, R. & Karle, I. L. (1998). J. Am. Chem. Soc.120, 10793–10800.
  • Schrock, R. R. (1998). Topics in Organometallic Chemistry, Vol. 1, pp. 1–36. Berlin: Springer.
  • Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc.115, 2714–2722.
  • Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev.99, 2561–2572. [PubMed]
  • Tucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem.37, 1602–1608.
  • Veiros, L. F., Prazeres, Â., Costa, P. J., Romão, C. C., Kühn, F. E. & Calhorda, M. J. (2006). Dalton Trans. pp. 1383–1389. [PubMed]
  • Zhang, Z., Rettig, S. J. & Orvig, C. (1992). Can. J. Chem.70, 763–770.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography