PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m572.
Published online 2008 March 29. doi:  10.1107/S1600536808007393
PMCID: PMC2960931

4-[(E)-2-Ferrocenylethen­yl]-1,8-naphthalic anhydride

Abstract

In the structure of the title compound, [Fe(C5H5)(C19H11O3)], the plane of the substituted ferrocene ring is tilted by 14.17 (6)° with respect to the mean plane through the naphthalene ring system. In the crystal structure, centrosymmetric dimers are formed through π–π inter­actions [centroid–centroid distance = 3.624 (2) Å] between the substituted ferrocene ring and the three fused rings of the naphthalic anhydride unit. Pairs of dimers are held together by further naphthalene–naphthalene π–π interactions [distance between parallel mean planes 3.45 (3) Å]. Each dimer inter­acts with four neighbouring dimers in a herringbone fashion through C—H(...)π inter­actions, so forming a two-dimensional sheet-like structure.

Related literature

For related literature, see: Allen (2002 [triangle]); Cuffe et al. (2005 [triangle]); Gan et al. (2004 [triangle]); Heck (1982 [triangle]); McAdam et al. (2003 [triangle]); Tian et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m572-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C19H11O3)]
  • M r = 408.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m572-efi1.jpg
  • a = 10.1070 (6) Å
  • b = 10.0046 (6) Å
  • c = 16.8721 (10) Å
  • β = 92.878 (3)°
  • V = 1703.89 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 91 (2) K
  • 0.38 × 0.14 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.816, T max = 0.921
  • 26830 measured reflections
  • 2984 independent reflections
  • 2895 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.089
  • S = 1.10
  • 2984 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.90 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004 [triangle]).

Table 1
C—H(...)π geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007393/su2047sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007393/su2047Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Otago for a John Edmond Postgraduate Scholarship in Chemistry (NHM) and the New Economic Research Fund (grant No. UOO-X0404) from the New Zealand Foundation of Research Science and Technology for financial support.

supplementary crystallographic information

Comment

Molecular dyads have potential uses in the development of new molecular materials for a variety of technological applications (Gan et al., 2004; Tian et al., 2000). A group of attractive donor-acceptor targets involve species incorporating oxidisable ferrocene moieties and fluorescent naphthalamide acceptors (Cuffe et al., 2005).

The title compound, I, was prepared by the Heck coupling (Heck 1982) of 4-bromonaphthalic anhydride and vinylferrocene. Cyclic voltametry of I shows a reversible ferrocenyl oxidation at 0.62 V and an irreversible multi-electron process at -1.0 V associated with the naphthalene moiety (McAdam et al., 2003).

The molecular structure of compound I is illustrated in Fig. 1. The molecule consists of a ferrocene moiety linked in a trans fashion through an ethene to a naphthalic anhydride group. The bond length between the ethene carbons, C13 and C14, agrees well with the mean value of 1.32 (2) Å found for 49 observations in 41 structures from the Cambridge Structural Database (version 5.28, last update Nov. 2007; Allen, 2002). The ferrocene rings are eclipsed and tilted by 3.14 (9)° with respect to each other. The plane of the substituted ferrocene ring is tilted by 14.17 (6)° with respect to the plane of the naphthalene ring [C1—C12, O1] such that the ethene linked ring is above the plane. This tilt arises from steric interactions between the peri H atom of the naphthalene ring and the adjacent H atom of the ethene moiety.

In the crystal structure of I centrosymmetric dimers are formed through strong complementary π-π interactions between the substituted ferrocene rings and the heterocyclic pyrandione rings [C1, C6, C7, C11, C12, O1]. The distance between the centroids of the cyclopentadiene and the six-membered heterocyclic ring is 3.624 (2) Å. These dimers are held together by naphthalene-naphthalene π-π interactions, with a distance of 3.45 (3) Å between the symmetry related parallel mean planes of the three fused rings of the naphthalic anhydride moiety. In addition there are also complementary C=O···HC(cyclopentadiene) interactions at 2.46 Å [corresponding separation for O3···C24 is 3.386 (4) Å]. Packing is achieved through (cyclopentadiene) C—H···π(cyclopentadiene) interactions at 2.77 Å, such that each dimer interacts with four neighbouring dimers in a herringbone fashion to form a two-dimensional sheet-like structure (Fig. 2).

Experimental

The reagents 4-bromonaphthalic anhydride (137.6 mg, 0.497 mmol), vinylferrocene (95.4 mg, 0.45 mmol), Pd(OAc)2 (63.9 mg, 0.285 mmol) and P(o-tolyl)3 (21.5 mg, 0.071 mmol) were combined then dissolved in DMF (20 ml) with Et3N (0.3 ml, 2.16 mmol). The dark red solution obtained was refluxed for 18 h at 80°C giving a dark brown solution. This was reduced in volume to give a black oil and solid. The crude mixture was purified by column chromatography (DCM on 5% hydrated SiO2) and the band which eluted fourth was reduced to give 28.4 mg (16%) of a green/black solid, compound I. NMR (δ, p.p.m., CDCl3): 4.22 (s, 5H, Cp) 4.47 (t, 2H (J = 2 Hz) Hβ) 4.63 (t, 2H, (J = 2 Hz) Hα) 7.28 (d, 1H (J = 16) Fc—CH=CH—R) 7.47 (d, 1H (J = 16 Hz) Fc—CH=CH—R) 7.84 (dd, 1H (J = 7, 9 Hz) H-6) 8.01 (d, 1H (J = 8 Hz) H-3) 8.59 (d, 1H (J = 8 Hz) H-2) 8.64 (m, 2H, H-5, H-7). IR (KBr, cm-1): 1768, 1725 (νc=o).E (CH2Cl2, V): [Fc]+/0 = 0.62, [naph]0/- = -1.0 (irreversible multi-electron process). UV-vis (λ, nm (ε, mol-1L cm-1x 10-3), CH2Cl2): compound (I) 549 (6), 394 (16), 298 (8); oxidized compound (I) 834 (0.9), 386 (19). High resolution mass spec {M+] predicted: 408.04299. Found: 408.04299. Anal. Calc. for C24H16FeO3: C, 70.61; H, 3.95. Found: C, 70.70; H, 3.96. X-ray quality crystals were grown by the slow evaporation of an acetonitrile solution.

Refinement

The H-atoms were included in calculated positions and treated as riding atoms: d(C—H) = 0.93 Å with Uiso=1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of compound I, showing the atom numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal packing in compound I, showing the formation of the two-dimensional sheet-like structure with the herring-bone packing.

Crystal data

[Fe(C5H5)(C19H11O3)]F000 = 840
Mr = 408.22Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9917 reflections
a = 10.1070 (6) Åθ = 2.9–37.6º
b = 10.0046 (6) ŵ = 0.91 mm1
c = 16.8721 (10) ÅT = 91 (2) K
β = 92.878 (3)ºRhomb, black
V = 1703.89 (18) Å30.38 × 0.14 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2984 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 91(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2006)h = −12→12
Tmin = 0.816, Tmax = 0.921k = −11→11
26830 measured reflectionsl = −20→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0331P)2 + 3.1715P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2984 reflectionsΔρmax = 0.90 e Å3
253 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Spectroelectrochemical measurements were obtained with a Pt electrode in CH2Cl2 with 0.1 M TBAPF6 at 20°C, referenced against decamethylferrocene where [Fc]+/0 = 0.55 V. UV-vis spectra were performed in an UV-vis OTTLE cell (3 mm volume) with a Pt grid and auxilary electrodes in CHCl2 at 20°C, referenced against internal Ag wire.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.07515 (3)1.05807 (3)0.660712 (19)0.01502 (12)
O10.69220 (18)0.43886 (18)0.35524 (11)0.0251 (4)
C60.5911 (2)0.6272 (2)0.45911 (14)0.0169 (5)
C40.4346 (2)0.8070 (2)0.48669 (15)0.0204 (5)
C50.5405 (2)0.7223 (2)0.51375 (15)0.0199 (5)
C130.3814 (2)0.9090 (2)0.53817 (15)0.0190 (5)
H130.43550.93920.58070.023*
C150.2091 (2)1.0720 (2)0.57412 (15)0.0200 (5)
C190.2614 (2)1.1284 (2)0.64766 (15)0.0190 (5)
H190.33721.10050.67660.023*
O30.8461 (2)0.3763 (2)0.44491 (12)0.0348 (5)
C22−0.0984 (2)1.0294 (3)0.71692 (15)0.0204 (5)
H22−0.16811.08970.71910.025*
C10.5384 (2)0.6172 (3)0.38121 (15)0.0223 (5)
C23−0.0840 (3)0.9306 (3)0.65806 (16)0.0251 (6)
H23−0.14260.91450.61490.030*
C100.5973 (2)0.7270 (2)0.59164 (14)0.0201 (5)
H100.56430.78670.62800.024*
C120.7539 (2)0.4460 (3)0.42967 (16)0.0223 (5)
C160.0908 (2)1.1446 (3)0.55162 (15)0.0210 (5)
H160.03581.12880.50680.025*
C170.0725 (2)1.2437 (2)0.60898 (15)0.0217 (5)
H170.00341.30520.60820.026*
C200.0949 (3)0.9163 (2)0.74713 (15)0.0221 (5)
H200.17410.88930.77270.026*
O20.5549 (2)0.5067 (2)0.25773 (12)0.0355 (5)
C80.7537 (3)0.5533 (3)0.56121 (16)0.0262 (6)
H80.82510.49920.57690.031*
C140.2605 (2)0.9620 (2)0.52849 (15)0.0206 (5)
H140.20410.92540.48900.025*
C110.5911 (3)0.5219 (3)0.32662 (17)0.0265 (6)
C210.0111 (2)1.0207 (2)0.77156 (14)0.0186 (5)
H210.02601.07430.81610.022*
C20.4360 (2)0.7034 (3)0.35592 (16)0.0254 (6)
H20.40080.69870.30400.030*
C70.6983 (2)0.5456 (2)0.48600 (15)0.0214 (5)
C30.3872 (2)0.7951 (3)0.40754 (15)0.0232 (5)
H30.31960.85190.38910.028*
C180.1760 (2)1.2345 (2)0.66792 (15)0.0200 (5)
H180.18651.28880.71250.024*
C240.0358 (3)0.8603 (2)0.67643 (16)0.0275 (6)
H240.06960.79020.64740.033*
C90.7014 (3)0.6443 (3)0.61456 (16)0.0265 (6)
H90.73750.64890.66630.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0178 (2)0.01168 (19)0.0162 (2)−0.00187 (13)0.00728 (13)0.00029 (13)
O10.0288 (10)0.0219 (9)0.0255 (10)0.0002 (8)0.0084 (8)−0.0089 (7)
C60.0169 (11)0.0120 (11)0.0227 (12)−0.0051 (9)0.0096 (10)0.0003 (9)
C40.0183 (12)0.0173 (12)0.0261 (13)−0.0048 (10)0.0065 (10)−0.0015 (10)
C50.0197 (12)0.0160 (12)0.0245 (13)−0.0054 (10)0.0072 (10)−0.0009 (10)
C130.0194 (12)0.0171 (12)0.0210 (12)−0.0012 (10)0.0052 (10)0.0023 (10)
C150.0252 (13)0.0141 (12)0.0221 (13)−0.0059 (10)0.0143 (10)0.0005 (10)
C190.0157 (11)0.0179 (12)0.0241 (13)−0.0032 (9)0.0063 (10)0.0040 (10)
O30.0388 (12)0.0286 (11)0.0378 (12)0.0101 (9)0.0102 (9)−0.0033 (9)
C220.0191 (12)0.0217 (13)0.0212 (13)−0.0014 (10)0.0094 (10)0.0058 (10)
C10.0198 (12)0.0243 (13)0.0232 (13)−0.0084 (10)0.0063 (10)−0.0033 (10)
C230.0271 (13)0.0281 (14)0.0205 (13)−0.0138 (11)0.0062 (11)0.0024 (11)
C100.0247 (13)0.0179 (12)0.0182 (12)−0.0039 (10)0.0066 (10)−0.0039 (10)
C120.0195 (12)0.0217 (13)0.0266 (14)0.0012 (11)0.0095 (10)0.0022 (10)
C160.0222 (12)0.0221 (13)0.0193 (12)−0.0024 (10)0.0078 (10)0.0048 (10)
C170.0232 (13)0.0164 (12)0.0266 (14)0.0026 (10)0.0118 (11)0.0064 (10)
C200.0215 (12)0.0180 (12)0.0274 (14)0.0026 (10)0.0086 (10)0.0089 (10)
O20.0325 (11)0.0474 (13)0.0267 (11)−0.0013 (9)0.0030 (9)−0.0164 (9)
C80.0267 (13)0.0236 (13)0.0285 (14)0.0048 (11)0.0017 (11)0.0029 (11)
C140.0225 (12)0.0188 (12)0.0211 (13)−0.0038 (10)0.0086 (10)−0.0015 (10)
C110.0205 (13)0.0267 (14)0.0327 (16)−0.0074 (11)0.0059 (11)−0.0045 (12)
C210.0234 (12)0.0162 (12)0.0169 (12)−0.0024 (10)0.0080 (10)0.0023 (9)
C20.0198 (12)0.0335 (15)0.0227 (13)−0.0056 (11)0.0006 (10)−0.0035 (11)
C70.0233 (13)0.0179 (12)0.0234 (13)−0.0063 (10)0.0039 (10)0.0010 (10)
C30.0183 (12)0.0257 (13)0.0255 (14)0.0017 (10)−0.0014 (10)0.0003 (11)
C180.0270 (13)0.0131 (11)0.0207 (13)−0.0058 (10)0.0114 (10)−0.0021 (9)
C240.0422 (16)0.0110 (12)0.0316 (14)−0.0049 (11)0.0237 (12)−0.0008 (10)
C90.0316 (14)0.0237 (13)0.0245 (14)0.0039 (11)0.0041 (11)−0.0005 (11)

Geometric parameters (Å, °)

Fe1—C192.032 (2)C22—C231.414 (4)
Fe1—C202.037 (2)C22—H220.9300
Fe1—C242.038 (2)C1—C21.398 (4)
Fe1—C182.039 (2)C1—C111.446 (4)
Fe1—C212.044 (2)C23—C241.421 (4)
Fe1—C152.046 (2)C23—H230.9300
Fe1—C162.047 (2)C10—C91.378 (4)
Fe1—C232.051 (3)C10—H100.9300
Fe1—C172.052 (2)C12—C71.505 (4)
Fe1—C222.055 (2)C16—C171.404 (4)
O1—C121.376 (3)C16—H160.9300
O1—C111.385 (3)C17—C181.410 (4)
C6—C11.397 (4)C17—H170.9300
C6—C71.413 (4)C20—C211.419 (3)
C6—C51.436 (3)C20—C241.422 (4)
C4—C31.401 (4)C20—H200.9300
C4—C51.423 (4)O2—C111.210 (3)
C4—C131.460 (3)C8—C71.363 (4)
C5—C101.408 (4)C8—C91.402 (4)
C13—C141.334 (4)C8—H80.9300
C13—H130.9300C14—H140.9300
C15—C161.433 (4)C21—H210.9300
C15—C191.439 (4)C2—C31.374 (4)
C15—C141.454 (3)C2—H20.9300
C19—C181.421 (3)C3—H30.9300
C19—H190.9300C18—H180.9300
O3—C121.182 (3)C24—H240.9300
C22—C211.407 (4)C9—H90.9300
C19—Fe1—C20105.12 (10)C23—C22—H22125.9
C19—Fe1—C24122.55 (11)Fe1—C22—H22126.4
C20—Fe1—C2440.84 (11)C6—C1—C2119.0 (2)
C19—Fe1—C1840.87 (10)C6—C1—C11120.8 (2)
C20—Fe1—C18121.99 (11)C2—C1—C11120.2 (2)
C24—Fe1—C18158.90 (12)C22—C23—C24108.0 (2)
C19—Fe1—C21120.01 (10)C22—C23—Fe170.01 (14)
C20—Fe1—C2140.69 (10)C24—C23—Fe169.17 (14)
C24—Fe1—C2168.32 (10)C22—C23—H23126.0
C18—Fe1—C21106.50 (10)C24—C23—H23126.0
C19—Fe1—C1541.34 (10)Fe1—C23—H23126.4
C20—Fe1—C15120.94 (10)C9—C10—C5120.7 (2)
C24—Fe1—C15107.42 (10)C9—C10—H10119.6
C18—Fe1—C1568.72 (9)C5—C10—H10119.6
C21—Fe1—C15156.53 (11)O3—C12—O1119.0 (2)
C19—Fe1—C1669.03 (10)O3—C12—C7124.6 (3)
C20—Fe1—C16158.25 (10)O1—C12—C7116.4 (2)
C24—Fe1—C16123.50 (11)C17—C16—C15108.2 (2)
C18—Fe1—C1668.07 (10)C17—C16—Fe170.12 (14)
C21—Fe1—C16160.44 (10)C15—C16—Fe169.43 (14)
C15—Fe1—C1640.99 (10)C17—C16—H16125.9
C19—Fe1—C23160.48 (11)C15—C16—H16125.9
C20—Fe1—C2368.35 (11)Fe1—C16—H16126.1
C24—Fe1—C2340.66 (11)C16—C17—C18108.7 (2)
C18—Fe1—C23158.20 (11)C16—C17—Fe169.80 (14)
C21—Fe1—C2367.81 (10)C18—C17—Fe169.36 (14)
C15—Fe1—C23124.95 (10)C16—C17—H17125.6
C16—Fe1—C23109.84 (10)C18—C17—H17125.6
C19—Fe1—C1768.47 (10)Fe1—C17—H17126.8
C20—Fe1—C17159.02 (11)C21—C20—C24107.6 (2)
C24—Fe1—C17159.33 (12)C21—C20—Fe169.93 (14)
C18—Fe1—C1740.31 (10)C24—C20—Fe169.64 (14)
C21—Fe1—C17123.83 (10)C21—C20—H20126.2
C15—Fe1—C1768.26 (10)C24—C20—H20126.2
C16—Fe1—C1740.07 (10)Fe1—C20—H20125.8
C23—Fe1—C17124.05 (11)C7—C8—C9118.9 (2)
C19—Fe1—C22156.20 (10)C7—C8—H8120.5
C20—Fe1—C2268.13 (10)C9—C8—H8120.5
C24—Fe1—C2268.15 (10)C13—C14—C15125.8 (2)
C18—Fe1—C22121.92 (10)C13—C14—H14117.1
C21—Fe1—C2240.14 (10)C15—C14—H14117.1
C15—Fe1—C22161.72 (11)O2—C11—O1116.2 (2)
C16—Fe1—C22125.47 (10)O2—C11—C1126.2 (3)
C23—Fe1—C2240.27 (10)O1—C11—C1117.5 (2)
C17—Fe1—C22109.22 (10)C22—C21—C20108.4 (2)
C12—O1—C11125.4 (2)C22—C21—Fe170.36 (14)
C1—C6—C7120.7 (2)C20—C21—Fe169.38 (14)
C1—C6—C5121.4 (2)C22—C21—H21125.8
C7—C6—C5117.9 (2)C20—C21—H21125.8
C3—C4—C5118.1 (2)Fe1—C21—H21126.1
C3—C4—C13120.5 (2)C3—C2—C1120.2 (2)
C5—C4—C13121.3 (2)C3—C2—H2119.9
C10—C5—C4123.0 (2)C1—C2—H2119.9
C10—C5—C6118.7 (2)C8—C7—C6122.6 (2)
C4—C5—C6118.3 (2)C8—C7—C12118.5 (2)
C14—C13—C4124.5 (2)C6—C7—C12119.0 (2)
C14—C13—H13117.7C2—C3—C4123.0 (2)
C4—C13—H13117.7C2—C3—H3118.5
C16—C15—C19107.2 (2)C4—C3—H3118.5
C16—C15—C14124.0 (2)C17—C18—C19108.5 (2)
C19—C15—C14128.9 (2)C17—C18—Fe170.33 (14)
C16—C15—Fe169.57 (13)C19—C18—Fe169.30 (13)
C19—C15—Fe168.82 (13)C17—C18—H18125.7
C14—C15—Fe1126.43 (17)C19—C18—H18125.7
C18—C19—C15107.4 (2)Fe1—C18—H18126.2
C18—C19—Fe169.83 (13)C23—C24—C20107.8 (2)
C15—C19—Fe169.84 (13)C23—C24—Fe170.16 (14)
C18—C19—H19126.3C20—C24—Fe169.53 (14)
C15—C19—H19126.3C23—C24—H24126.1
Fe1—C19—H19125.6C20—C24—H24126.1
C21—C22—C23108.2 (2)Fe1—C24—H24125.8
C21—C22—Fe169.50 (14)C10—C9—C8121.1 (3)
C23—C22—Fe169.72 (14)C10—C9—H9119.4
C21—C22—H22125.9C8—C9—H9119.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18···Cgi0.932.773.449 (3)131

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2047).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cuffe, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051–2060.
  • Gan, J.-A., Song, Q. L., Hou, X. Y., Chen, K. & Tian, H. (2004). J. Photochem. Photobiol. A Chem.162, 399–406.
  • Heck, R. F. (1982). Org. React.27, 345–390.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126–5136.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tian, H., Su, J., Chen, K., Wong, T. C., Gao, Z. Q., Lee, C. S. & Lee, S. T. (2000). Opt. Mater.14, 91–94.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography