PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m568–m569.
Published online 2008 March 20. doi:  10.1107/S1600536808007265
PMCID: PMC2960929

catena-Poly[[[bis­(thio­urea-κS)copper(I)]-μ-thio­urea-κ2 S:S] iodide acetonitrile hemisolvate]

Abstract

The title complex, {[Cu(CH4N2S)3]I·0.5CH3CN}n, was formed by the reaction of CuI and thio­urea in acetonitrile. There are two independent CuI ions in the asymmetric unit which are coordinated by two terminal and two bridging thio­urea ligands to form a one-dimensional helical chain structure progagating in the a-axis direction. Each CuI ion is in a distorted tetra­hedral coordination environment. The crystal structure is stabilized by weak N—H(...)S and N—H(...)I hydrogen bonds.

Related literature

For related literature, see: Bombicz et al. (2004 [triangle]); Bott et al. (1998 [triangle]); Stocker et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m568-scheme1.jpg

Experimental

Crystal data

  • [Cu(CH4N2S)3]I·0.5C2H3N
  • M r = 439.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m568-efi1.jpg
  • a = 13.392 (8) Å
  • b = 13.874 (9) Å
  • c = 15.289 (9) Å
  • V = 2841 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.14 mm−1
  • T = 298 (2) K
  • 0.43 × 0.39 × 0.31 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.269, T max = 0.360 (expected range = 0.207–0.277)
  • 14883 measured reflections
  • 4963 independent reflections
  • 4175 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.077
  • S = 1.00
  • 4963 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.56 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2149 Friedel pairs
  • Flack parameter: −0.01 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007265/lh2596sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007265/lh2596Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Natural Science Foundation of Liaocheng University (X051002) forsupport.

supplementary crystallographic information

Comment

Some copper(I) compounds containing thiourea ligands have been described previously (Bombicz et al., 2004; Bott et al., 1998; Stocker et al., 1996). In this paper, we report the synthesis and the structure of a complex formed by the reaction of thiourea with cuprous iodide. The asymmetric unit of the title compound is shown in Fig. 1. The CuI ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands and two terminal thiourea ligands. A one-dimensional helical chain structure parallel to the a axis direction is formed (Fig. 2). An iodide counter ion and half an acetonitrile solvent molecule complete the formula unit although there are two formula units in the asymmetric unit of the crystal structure. The Cu—S distances are in the range of 2.275 (2)–2.435 (2) Å, and agree with those in related structures (Bombicz et al., 2004). In the title compound, the S=C distances are the same within experimental error.

In the crystal structure, there are two different types of hydrogen bonds. Intramolecular N—H···S interactions appear to influence the conformation of the helical chains while intermolecular N—H···S and N—H···I interactions stabilize the crystal structure.

Experimental

CuI (0.19 g 1 mmol) and thiourea (0.16 g 2 mmol) in 10 ml acetonitrile were refluxed for 24 h, forming a colorless solution. After filtration, the solution was allowed to evaporate slowly and crystals suitable for X-ray diffraction were obtained after several days.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms, with, N—H 0.86, C—H 0.96 Å, with Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The asymmetric unit with atom labels and 30% probability displacement ellipsoids. H atoms are not shown.
Fig. 2.
Part of the one-dimensional helical chain structure of the title complex.

Crystal data

[Cu(CH4N2S)3]I·0.5C2H3NF000 = 1704
Mr = 439.33Dx = 2.055 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6067 reflections
a = 13.392 (8) Åθ = 2.4–24.6º
b = 13.874 (9) ŵ = 4.14 mm1
c = 15.289 (9) ÅT = 298 (2) K
V = 2841 (3) Å3Block, colorless
Z = 80.43 × 0.39 × 0.31 mm

Data collection

Bruker SMART CCD diffractometer4963 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.269, Tmax = 0.360k = −14→16
14883 measured reflectionsl = −18→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.75 e Å3
4963 reflectionsΔρmin = −0.56 e Å3
280 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2149 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.43289 (6)0.62730 (6)0.51306 (5)0.0352 (2)
Cu20.21551 (6)0.78050 (6)0.36342 (6)0.0378 (2)
I10.73774 (3)0.35628 (3)0.66369 (3)0.03691 (12)
I20.56899 (4)0.12983 (4)0.53537 (3)0.04740 (14)
N10.5123 (4)0.8657 (5)0.4926 (4)0.0528 (18)
H1A0.54020.92000.50430.063*
H1B0.53890.81290.51060.063*
N20.3902 (5)0.9446 (5)0.4202 (5)0.064 (2)
H2A0.41890.99840.43250.077*
H2B0.33580.94420.39030.077*
N30.3841 (5)0.3114 (4)0.4764 (4)0.0459 (16)
H3A0.40730.26120.50240.055*
H3B0.33270.30640.44300.055*
N40.5048 (5)0.3993 (5)0.5388 (4)0.0566 (19)
H4A0.52630.34790.56400.068*
H4B0.53450.45340.54740.068*
N50.2276 (5)0.5314 (6)0.6094 (5)0.067 (2)
H5A0.17080.50490.62020.081*
H5B0.25350.52670.55810.081*
N60.2313 (5)0.5839 (5)0.7483 (4)0.0615 (19)
H6A0.17450.55660.75710.074*
H6B0.26020.61460.79010.074*
N7−0.0075 (5)0.5530 (5)0.2887 (5)0.057 (2)
H7A−0.06490.55430.26340.068*
H7B0.01180.50180.31540.068*
N80.0191 (4)0.7058 (4)0.2453 (4)0.0462 (17)
H8A−0.03850.70560.22040.055*
H8B0.05610.75640.24310.055*
N90.2578 (5)0.7295 (5)0.1506 (4)0.0568 (18)
H9A0.27650.70190.10300.068*
H9B0.24870.69590.19720.068*
N100.2579 (7)0.8700 (6)0.0790 (4)0.089 (3)
H10A0.27670.84100.03210.107*
H10B0.24860.93140.07860.107*
N110.1163 (4)0.9243 (5)0.6331 (4)0.0478 (16)
H11A0.14050.92680.68510.057*
H11B0.06370.95700.62010.057*
N120.2399 (5)0.8212 (5)0.5951 (4)0.065 (2)
H12A0.26310.82450.64740.078*
H12B0.26910.78560.55680.078*
N130.4435 (6)0.5766 (7)0.2168 (5)0.080 (3)
S10.37489 (12)0.75471 (12)0.42179 (11)0.0289 (4)
S20.38359 (13)0.49427 (13)0.43325 (11)0.0347 (4)
S30.38436 (12)0.63528 (15)0.65547 (11)0.0409 (4)
S40.16498 (11)0.62484 (13)0.33684 (12)0.0377 (4)
S50.20735 (14)0.88344 (13)0.24281 (11)0.0407 (4)
S60.11161 (11)0.86565 (13)0.46883 (10)0.0300 (3)
C10.4293 (5)0.8635 (5)0.4470 (4)0.0371 (16)
C20.4269 (5)0.3951 (5)0.4876 (4)0.0351 (16)
C30.2741 (5)0.5786 (5)0.6706 (5)0.0375 (16)
C40.0505 (4)0.6292 (5)0.2864 (4)0.0339 (15)
C50.2434 (5)0.8202 (6)0.1521 (4)0.0462 (19)
C60.1593 (4)0.8707 (5)0.5735 (4)0.0306 (14)
C70.4660 (6)0.6535 (9)0.2169 (5)0.060 (3)
C80.4976 (7)0.7529 (7)0.2179 (7)0.075 (3)
H8C0.44440.79250.23980.112*
H8D0.51430.77280.15950.112*
H8E0.55510.75950.25490.112*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0331 (4)0.0335 (5)0.0391 (5)−0.0031 (4)0.0053 (4)−0.0024 (4)
Cu20.0300 (4)0.0451 (5)0.0383 (5)−0.0036 (4)−0.0070 (4)−0.0002 (4)
I10.0318 (2)0.0460 (3)0.0330 (2)−0.0026 (2)0.00101 (19)−0.0021 (2)
I20.0590 (3)0.0338 (3)0.0494 (3)0.0017 (3)0.0004 (2)0.0003 (3)
N10.041 (3)0.030 (3)0.087 (5)−0.005 (3)−0.032 (3)−0.001 (4)
N20.049 (4)0.033 (4)0.110 (6)−0.015 (3)−0.035 (4)0.013 (4)
N30.052 (4)0.039 (4)0.047 (4)−0.001 (3)−0.006 (3)0.003 (3)
N40.060 (5)0.043 (4)0.067 (5)−0.004 (3)−0.033 (4)0.013 (4)
N50.042 (4)0.082 (5)0.078 (5)−0.022 (4)0.012 (4)−0.004 (4)
N60.067 (5)0.062 (4)0.055 (4)−0.004 (4)0.032 (4)0.006 (3)
N70.047 (4)0.037 (4)0.087 (5)−0.008 (3)−0.012 (4)0.008 (4)
N80.024 (3)0.042 (4)0.072 (5)0.000 (3)−0.012 (3)0.004 (4)
N90.058 (4)0.072 (5)0.041 (4)0.015 (4)0.011 (3)−0.018 (3)
N100.146 (8)0.089 (6)0.032 (4)−0.057 (7)0.019 (5)−0.008 (4)
N110.042 (3)0.069 (5)0.032 (3)0.018 (3)−0.006 (3)−0.016 (3)
N120.049 (4)0.117 (6)0.028 (3)0.039 (4)−0.005 (3)−0.004 (3)
N130.066 (5)0.106 (7)0.066 (5)−0.018 (5)−0.025 (4)0.011 (5)
S10.0239 (8)0.0303 (9)0.0326 (9)0.0005 (7)−0.0038 (7)0.0001 (7)
S20.0379 (9)0.0327 (10)0.0336 (10)−0.0020 (8)−0.0104 (8)0.0010 (8)
S30.0372 (8)0.0529 (11)0.0327 (9)−0.0054 (9)0.0030 (8)−0.0016 (9)
S40.0291 (8)0.0365 (10)0.0474 (10)0.0026 (7)−0.0061 (8)0.0006 (9)
S50.0527 (11)0.0376 (10)0.0319 (9)0.0019 (8)−0.0045 (8)0.0017 (8)
S60.0214 (7)0.0422 (10)0.0265 (8)0.0012 (8)0.0006 (6)−0.0039 (9)
C10.035 (3)0.035 (4)0.042 (4)0.003 (4)−0.004 (3)0.001 (3)
C20.032 (4)0.042 (4)0.031 (4)−0.009 (3)−0.003 (3)−0.004 (3)
C30.038 (4)0.032 (4)0.042 (4)0.007 (3)0.010 (4)0.008 (3)
C40.030 (3)0.034 (4)0.038 (4)0.001 (3)0.003 (3)−0.004 (3)
C50.037 (4)0.068 (6)0.034 (4)−0.011 (4)−0.003 (4)−0.003 (4)
C60.025 (3)0.042 (4)0.025 (3)−0.003 (3)−0.001 (3)0.003 (3)
C70.040 (5)0.100 (9)0.041 (5)−0.003 (5)0.000 (4)0.012 (5)
C80.059 (6)0.096 (8)0.069 (7)−0.013 (5)0.028 (5)0.000 (6)

Geometric parameters (Å, °)

Cu1—S32.275 (2)N7—H7B0.8600
Cu1—S22.309 (2)N8—C41.303 (9)
Cu1—S12.382 (2)N8—H8A0.8600
Cu1—S6i2.411 (2)N8—H8B0.8600
Cu2—S42.299 (2)N9—C51.273 (10)
Cu2—S52.335 (2)N9—H9A0.8600
Cu2—S12.341 (2)N9—H9B0.8600
Cu2—S62.435 (2)N10—C51.328 (10)
N1—C11.313 (8)N10—H10A0.8600
N1—H1A0.8600N10—H10B0.8600
N1—H1B0.8600N11—C61.309 (8)
N2—C11.307 (9)N11—H11A0.8600
N2—H2A0.8600N11—H11B0.8600
N2—H2B0.8600N12—C61.321 (9)
N3—C21.307 (8)N12—H12A0.8600
N3—H3A0.8600N12—H12B0.8600
N3—H3B0.8600N13—C71.109 (12)
N4—C21.306 (8)S1—C11.719 (7)
N4—H4A0.8600S2—C21.708 (7)
N4—H4B0.8600S3—C31.689 (7)
N5—C31.301 (10)S4—C41.718 (6)
N5—H5A0.8600S5—C51.711 (8)
N5—H5B0.8600S6—C61.725 (6)
N6—C31.321 (9)S6—Cu1ii2.411 (2)
N6—H6A0.8600C7—C81.442 (14)
N6—H6B0.8600C8—H8C0.9600
N7—C41.313 (8)C8—H8D0.9600
N7—H7A0.8600C8—H8E0.9600
S3—Cu1—S2117.58 (8)C6—N11—H11A120.0
S3—Cu1—S1115.55 (8)C6—N11—H11B120.0
S2—Cu1—S1100.97 (8)H11A—N11—H11B120.0
S3—Cu1—S6i99.89 (6)C6—N12—H12A120.0
S2—Cu1—S6i112.14 (7)C6—N12—H12B120.0
S1—Cu1—S6i111.15 (7)H12A—N12—H12B120.0
S4—Cu2—S5114.90 (8)C1—S1—Cu2109.7 (2)
S4—Cu2—S1101.08 (7)C1—S1—Cu1112.4 (2)
S5—Cu2—S1115.93 (7)Cu2—S1—Cu1129.34 (8)
S4—Cu2—S6113.86 (7)C2—S2—Cu1106.8 (2)
S5—Cu2—S6101.49 (8)C3—S3—Cu1111.0 (3)
S1—Cu2—S6110.05 (7)C4—S4—Cu2108.0 (3)
C1—N1—H1A120.0C5—S5—Cu2108.3 (3)
C1—N1—H1B120.0C6—S6—Cu1ii105.0 (2)
H1A—N1—H1B120.0C6—S6—Cu2115.0 (2)
C1—N2—H2A120.0Cu1ii—S6—Cu2131.52 (7)
C1—N2—H2B120.0N2—C1—N1119.0 (7)
H2A—N2—H2B120.0N2—C1—S1121.1 (5)
C2—N3—H3A120.0N1—C1—S1119.9 (6)
C2—N3—H3B120.0N4—C2—N3117.9 (6)
H3A—N3—H3B120.0N4—C2—S2121.8 (5)
C2—N4—H4A120.0N3—C2—S2120.2 (5)
C2—N4—H4B120.0N5—C3—N6117.9 (7)
H4A—N4—H4B120.0N5—C3—S3123.7 (6)
C3—N5—H5A120.0N6—C3—S3118.5 (6)
C3—N5—H5B120.0N8—C4—N7118.6 (6)
H5A—N5—H5B120.0N8—C4—S4122.2 (5)
C3—N6—H6A120.0N7—C4—S4119.2 (6)
C3—N6—H6B120.0N9—C5—N10118.6 (8)
H6A—N6—H6B120.0N9—C5—S5124.3 (6)
C4—N7—H7A120.0N10—C5—S5117.1 (7)
C4—N7—H7B120.0N11—C6—N12118.8 (6)
H7A—N7—H7B120.0N11—C6—S6120.3 (5)
C4—N8—H8A120.0N12—C6—S6120.8 (5)
C4—N8—H8B120.0N13—C7—C8178.6 (11)
H8A—N8—H8B120.0C7—C8—H8C109.5
C5—N9—H9A120.0C7—C8—H8D109.5
C5—N9—H9B120.0H8C—C8—H8D109.5
H9A—N9—H9B120.0C7—C8—H8E109.5
C5—N10—H10A120.0H8C—C8—H8E109.5
C5—N10—H10B120.0H8D—C8—H8E109.5
H10A—N10—H10B120.0

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···I2iii0.862.973.799 (7)161
N1—H1B···S6i0.862.683.524 (7)167
N2—H2A···I2iii0.863.143.929 (6)154
N2—H2B···S50.862.963.752 (7)154
N2—H2B···I1ii0.863.173.667 (7)119
N3—H3A···I20.862.873.645 (6)150
N3—H3B···I1iv0.863.063.720 (6)135
N4—H4A···I20.863.113.837 (7)144
N4—H4A···I10.863.223.706 (6)119
N4—H4B···S6i0.862.733.563 (7)165
N5—H5A···N13v0.862.413.192 (10)152
N5—H5A···I2iv0.863.323.796 (8)118
N7—H7A···I1vi0.863.043.839 (7)156
N7—H7B···I2iv0.863.023.837 (7)159
N8—H8A···I1vi0.862.933.759 (6)161
N8—H8B···S50.862.693.526 (6)166
N9—H9A···I2vii0.863.123.922 (6)155
N9—H9B···S40.862.613.429 (7)161
N10—H10A···I1vii0.863.013.716 (7)141
N11—H11A···I1viii0.862.993.791 (6)155
N11—H11B···S2ii0.862.633.466 (6)163
N12—H12A···I1viii0.862.923.732 (6)158
N12—H12B···S10.862.543.338 (6)155
N6—H6A···S2v0.862.893.397 (6)119
N6—H6A···N13v0.862.513.266 (11)147

Symmetry codes: (iii) x, y+1, z; (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+1; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, −y+1, z+1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2596).

References

  • Bombicz, P., Mutikainen, I., Krunks, M., Leskela, T., Madarasz, J. & Niinisto, L. (2004). Inorg. Chim. Acta, 357, 513–525.
  • Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem 37, 651–657.
  • Brandenburg, K. & Berndt, M. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Stocker, F. B., Troester, M. A. & Britton, D. (1996). Inorg. Chem.35, 3145–3153. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography