PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m549.
Published online 2008 March 14. doi:  10.1107/S1600536808006326
PMCID: PMC2960919

Poly[[(μ4-5-amino­isophthalato)aqua­iron(II)] dihydrate]

Abstract

In the title three-dimensional coordination polymer, {[Fe(C8H5NO4)(H2O)]·2H2O}n, the FeII atom exhibits a distorted octa­hedral geometry, being coordinated by one N and four O atoms from four 5-amino­isophthalate ligands and one water mol­ecule. In addition, the crystal structure is stabilized by numerous O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Wu et al. (2002 [triangle]); Zeng et al. (2007 [triangle]); Liao et al. (2006 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m549-scheme1.jpg

Experimental

Crystal data

  • [Fe(C8H5NO4)(H2O)]·2H2O
  • M r = 289.03
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m549-efi1.jpg
  • a = 7.7418 (2) Å
  • b = 8.5972 (2) Å
  • c = 8.6938 (2) Å
  • α = 85.560 (1)°
  • β = 76.058 (1)°
  • γ = 66.610 (1)°
  • V = 515.34 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.49 mm−1
  • T = 293 (2) K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.755, T max = 0.786
  • 5025 measured reflections
  • 2009 independent reflections
  • 1895 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.090
  • S = 1.05
  • 2009 reflections
  • 172 parameters
  • 11 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006326/gk2125sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006326/gk2125Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Guang Dong Ocean University for supporting this study.

supplementary crystallographic information

Comment

5-Aminoisophthalatic acid is a good example of a bridging ligand that can link metal centres into extended networks, and a number of one-, two- and three- dimensional coordination frameworks have been generated (Zeng et al., 2007; Wu et al., 2002; Liao et al. 2006). Recently, we have obtained the title three-dimensional iron polymer, (I), and its crystal structure is reported here. This complex is isostructural with the MnII complex reported by Liao and Yao (2006) and by Li et al. (2006).

In the structure of (I) each FeII atom is coordinated by four O atoms from three 5-aminoisophthalate ligands, one N atom from another 5-aminoisophthalate ligand and one water molecule, and displays a distorted octahedral coordination geometry. The 5-aminoisophthalate ligands bridge iron ions to form a three-dimensional network (Fig. 2). Moreover, there are O—H···O and N—H···O hydrogen-bonding interactions within the three-dimensional structure connecting the carboxyl O atoms and amino N atoms of 5-aminoisophthalate ligands, the coordinating water molecules and water of crystallization (Table 2).

Experimental

A mixture of FeCl2 (0.5 mmol), 5-aminoisophthalatic acid (0.5 mmol), NaOH (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated at 433 K for three days and then cooled to room temperature at a rate of 5 K h-1. Single crystals were obtained after washing with water and drying in air.

Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic), N—H = 0.90 Å and Uiso(H) = 1.2 Ueq(C,N). H atoms from water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints [O—H= 0.82 (1) Å and H···H= 1.34 (2) Å] with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -1 + x, y, z + 1; (ii) -x, 2 - y, 2 - z; (iii) 1 - x, 1 - y, 2 - z]]
Fig. 2.
The three-dimensional network structure of the title compound, viewed along the b axis.

Crystal data

[Fe(C8H5NO4)(H2O)]·2H2OZ = 2
Mr = 289.03F000 = 296
Triclinic, P1Dx = 1.863 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.7418 (2) ÅCell parameters from 1800 reflections
b = 8.5972 (2) Åθ = 1.4–28.0º
c = 8.6938 (2) ŵ = 1.49 mm1
α = 85.560 (1)ºT = 293 (2) K
β = 76.058 (1)ºBlock, red
γ = 66.610 (1)º0.20 × 0.18 × 0.17 mm
V = 515.34 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer2009 independent reflections
Radiation source: fine-focus sealed tube1895 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 293(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −9→9
Tmin = 0.755, Tmax = 0.786k = −10→10
5025 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0536P)2 + 0.5412P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2009 reflectionsΔρmax = 0.37 e Å3
172 parametersΔρmin = −0.57 e Å3
11 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2799 (3)0.8073 (3)0.9011 (2)0.0165 (4)
C20.4454 (3)0.7019 (3)0.7727 (2)0.0161 (4)
C30.5442 (3)0.7791 (3)0.6593 (2)0.0172 (4)
H30.50970.89570.66330.021*
C40.6955 (3)0.6798 (3)0.5397 (2)0.0168 (4)
C50.7464 (3)0.5058 (3)0.5320 (2)0.0178 (4)
H50.84340.44140.44870.021*
C60.6522 (3)0.4277 (3)0.6494 (2)0.0167 (4)
C70.5018 (3)0.5267 (3)0.7692 (2)0.0178 (4)
H70.43820.47550.84760.021*
C80.8096 (3)0.7607 (3)0.4223 (2)0.0178 (4)
Fe10.02840 (4)0.88499 (4)1.21504 (3)0.01967 (14)
N10.7168 (3)0.2480 (2)0.6517 (2)0.0204 (4)
H1A0.75730.20770.55130.025*
H1B0.61640.22030.69950.025*
O10.2198 (2)0.7325 (2)1.01815 (18)0.0251 (4)
O20.2094 (2)0.96615 (19)0.88749 (19)0.0208 (3)
O30.8199 (3)0.8942 (2)0.46223 (19)0.0243 (4)
O40.8971 (2)0.6932 (2)0.28758 (18)0.0252 (4)
O1W0.0523 (3)1.1127 (2)1.2728 (2)0.0341 (4)
H1W0.112 (5)1.105 (4)1.340 (3)0.051*
H2W0.065 (5)1.189 (3)1.217 (3)0.051*
O2W0.0978 (4)0.3865 (3)0.1118 (3)0.0480 (6)
H4W0.074 (5)0.464 (4)0.177 (4)0.072*
H3W−0.001 (3)0.401 (3)0.078 (3)0.072*
O3W0.4365 (3)0.1532 (3)0.9066 (3)0.0482 (6)
H5W0.376 (5)0.110 (5)0.867 (5)0.072*
H6W0.360 (4)0.231 (4)0.972 (4)0.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0130 (10)0.0204 (11)0.0149 (10)−0.0057 (9)−0.0015 (8)−0.0024 (8)
C20.0146 (10)0.0162 (11)0.0146 (9)−0.0043 (9)−0.0008 (8)0.0006 (8)
C30.0171 (10)0.0140 (10)0.0172 (10)−0.0045 (8)−0.0007 (8)0.0008 (8)
C40.0159 (10)0.0189 (11)0.0144 (9)−0.0070 (9)−0.0015 (8)0.0023 (8)
C50.0155 (10)0.0177 (11)0.0152 (10)−0.0034 (9)0.0014 (8)−0.0031 (8)
C60.0167 (10)0.0141 (10)0.0180 (10)−0.0047 (9)−0.0040 (8)0.0008 (8)
C70.0171 (10)0.0172 (11)0.0162 (10)−0.0065 (9)0.0003 (8)0.0020 (8)
C80.0143 (10)0.0189 (11)0.0164 (10)−0.0045 (9)−0.0015 (8)0.0046 (8)
Fe10.0206 (2)0.0162 (2)0.0187 (2)−0.00647 (15)0.00079 (13)−0.00049 (12)
N10.0215 (10)0.0140 (9)0.0234 (9)−0.0064 (8)−0.0008 (7)−0.0024 (7)
O10.0263 (9)0.0215 (8)0.0176 (8)−0.0064 (7)0.0075 (6)0.0003 (6)
O20.0173 (8)0.0148 (8)0.0255 (8)−0.0027 (6)−0.0020 (6)−0.0015 (6)
O30.0296 (9)0.0217 (8)0.0216 (8)−0.0140 (7)0.0013 (7)0.0010 (6)
O40.0289 (9)0.0252 (9)0.0169 (8)−0.0124 (8)0.0065 (6)−0.0010 (6)
O1W0.0553 (13)0.0231 (9)0.0353 (10)−0.0223 (9)−0.0204 (9)0.0055 (7)
O2W0.0719 (16)0.0267 (10)0.0453 (12)−0.0136 (11)−0.0229 (11)−0.0003 (9)
O3W0.0409 (12)0.0553 (15)0.0587 (14)−0.0314 (11)−0.0048 (10)−0.0085 (11)

Geometric parameters (Å, °)

C1—O11.254 (3)C8—O31.262 (3)
C1—O21.262 (3)Fe1—O12.1040 (16)
C1—C21.502 (3)Fe1—O2i2.1364 (16)
C2—C31.392 (3)Fe1—O1W2.1458 (17)
C2—C71.393 (3)Fe1—O4ii2.2387 (17)
C3—C41.392 (3)Fe1—O3ii2.3416 (16)
C3—H30.9300Fe1—N1iii2.376 (2)
C4—C51.390 (3)N1—H1A0.9000
C4—C81.499 (3)N1—H1B0.9000
C5—C61.396 (3)O1W—H1W0.815 (10)
C5—H50.9300O1W—H2W0.809 (9)
C6—C71.390 (3)O2W—H4W0.842 (10)
C6—N11.422 (3)O2W—H3W0.844 (10)
C7—H70.9300O3W—H5W0.843 (10)
C8—O41.256 (3)O3W—H6W0.840 (10)
O1—C1—O2123.12 (19)O1—Fe1—O4ii90.79 (6)
O1—C1—C2118.08 (19)O2i—Fe1—O4ii89.97 (6)
O2—C1—C2118.80 (18)O1W—Fe1—O4ii148.03 (7)
C3—C2—C7120.2 (2)O1—Fe1—O3ii145.97 (6)
C3—C2—C1119.97 (19)O2i—Fe1—O3ii91.37 (6)
C7—C2—C1119.81 (19)O1W—Fe1—O3ii90.96 (7)
C2—C3—C4119.2 (2)O4ii—Fe1—O3ii57.10 (6)
C2—C3—H3120.4O1—Fe1—N1iii85.72 (7)
C4—C3—H3120.4O2i—Fe1—N1iii172.50 (6)
C5—C4—C3120.64 (19)O1W—Fe1—N1iii83.48 (7)
C5—C4—C8119.82 (19)O4ii—Fe1—N1iii94.39 (7)
C3—C4—C8119.5 (2)O3ii—Fe1—N1iii85.91 (6)
C4—C5—C6120.03 (19)C6—N1—Fe1iii113.51 (14)
C4—C5—H5120.0C6—N1—H1A108.9
C6—C5—H5120.0Fe1iii—N1—H1A108.9
C7—C6—C5119.3 (2)C6—N1—H1B108.9
C7—C6—N1120.25 (19)Fe1iii—N1—H1B108.9
C5—C6—N1120.36 (19)H1A—N1—H1B107.7
C6—C7—C2120.5 (2)C1—O1—Fe1116.73 (14)
C6—C7—H7119.7C1—O2—Fe1i127.68 (14)
C2—C7—H7119.7C8—O3—Fe1iv88.55 (12)
O4—C8—O3120.90 (19)C8—O4—Fe1iv93.43 (13)
O4—C8—C4119.9 (2)Fe1—O1W—H1W116 (2)
O3—C8—C4119.15 (19)Fe1—O1W—H2W130 (2)
O1—Fe1—O2i100.34 (7)H1W—O1W—H2W105.6 (16)
O1—Fe1—O1W120.69 (8)H4W—O2W—H3W110.9 (17)
O2i—Fe1—O1W89.59 (7)H5W—O3W—H6W111.2 (18)

Symmetry codes: (i) −x, −y+2, −z+2; (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+2; (iv) x+1, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H3W···O2Wv0.844 (10)2.377 (9)2.892 (5)119.9 (9)
O3W—H5W···O2vi0.843 (10)2.09 (2)2.852 (3)151 (4)
O3W—H6W···O2Wvii0.840 (10)2.071 (19)2.865 (3)157 (3)
O2W—H4W···O4viii0.842 (10)2.05 (2)2.816 (3)151 (3)
O1W—H2W···O2Wix0.809 (9)1.943 (12)2.745 (3)171 (3)
O1W—H1W···O3x0.815 (10)1.914 (14)2.705 (3)163 (4)
N1—H1B···O3W0.902.193.015 (3)153

Symmetry codes: (v) −x, −y+1, −z; (vi) x, y−1, z; (vii) x, y, z+1; (viii) x−1, y, z; (ix) x, y+1, z+1; (x) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2125).

References

  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, X.-J., Yuan, D.-Q., Zhang, X.-D. & Cao, R. (2006). J. Coord. Chem.59, 969–976.
  • Liao, Q.-X. & Yao, Y.-G. (2006). Chin. J. Struct. Chem.25, 465–468.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, C.-D., Lu, C.-Z., Yang, W.-B., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem.41, 3302–3307. [PubMed]
  • Zeng, R.-H., Fang, Z.-Q., Sun, F., Jiang, L.-S. & Tang, Y.-W. (2007). Acta Cryst. E63, m1813–m1814.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography