PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o676.
Published online 2008 March 7. doi:  10.1107/S1600536808005904
PMCID: PMC2960914

1-Phenyl-3-{4-[4-(4-undecyl­oxybenzoyl­oxy)phenyl­oxycarbon­yl]phen­yl}triazene 1-oxide

Abstract

The X-ray crystallographic study of the title compound, C37H41N3O6, at 150 K establishes the N-oxide form of the triazene 1-oxide unit. There is one intra­molecular N—H(...)O hydrogen-bonding inter­action and the crystal packing is stabilized by one N—H(...)O, three C—H(...)O and three C—H(...)π inter­molecular inter­actions. The dihedral angles between pairs of adjacent benzene rings are 14.9 (3), 56.3 (1) and 56.0 (1)°

Related literature

For related literature, see: Ciunik et al. (2002 [triangle]); Das et al. (2005 [triangle]); Hörner et al. (2002 [triangle]); Rapta et al. (1996 [triangle]); Samanta et al. (1997 [triangle]); Vaughan et al. (1992 [triangle]); Wilman (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o676-scheme1.jpg

Experimental

Crystal data

  • C37H41N3O6
  • M r = 623.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o676-efi1.jpg
  • a = 5.674 (3) Å
  • b = 12.039 (7) Å
  • c = 24.931 (15) Å
  • α = 101.779 (10)°
  • β = 92.826 (11)°
  • γ = 96.565 (10)°
  • V = 1651.6 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 (2) K
  • 0.33 × 0.09 × 0.04 mm

Data collection

  • Bruker SMART APEX CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.988, T max = 0.995
  • 11715 measured reflections
  • 5812 independent reflections
  • 3464 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.096
  • wR(F 2) = 0.212
  • S = 1.08
  • 5812 reflections
  • 420 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005904/fj2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005904/fj2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support (SR/S1/IC-08/2007) from the DST, Government of India, is gratefully acknowledged. We thank the CSIR (India) for the award of a fellowship (PD) and the UGC (New Delhi) for the Special Assistance Programme to our Department. We also thank Professor A. Ramanan, IIT Delhi, for the X-ray crystallographic data collection.

supplementary crystallographic information

Comment

Triazene-1-oxides are well known for their chelating ability (Ciunik et al., 2002 & Hörner et al., 2002), antitumour activity (Wilman, 1988) and also for initiating radical polymerization (Rapta et al., 1996). In this communication the molecular structure of a triazene-1-oxide derivative has been reported. The molecular structure of the title compound, (I), has been shown in Figure 1, with the atom-numbering scheme. The planar phenyl moiety and trigonal planar geometry of the triazene N3 atom strongly suggest a resonance interaction extending over the C6, N1, N2 and N3 atoms. The N1—N2 and N2—N3 distances are in good agreement with the reported values of other triazene-1-oxides (Samanta et al., 1997; Vaughan et al., 1992). The shorter length of N1—N2 indicates its double-bond character and the longer N2—N3 distance is still shorter than a pure single-bond. The deviation of O1 from the molecular plane causes conjugation between N1—C6 to be less effective and is reflected in the longer N1—C6 than N3—C7 distance. There is an intramolecular N–H···O interaction within the triazene-1-oxide moiety (Figure 1, Table 1). The intramolecular hydrogen bondings result almost planar conformation of the triazene fragment of the molecule. The molecular packing of (I) has been shown in Figure 2. The intermolecular hydrogen bonding causes dimer formation of (I) (Figure 3). The crystal packing is stabilized by intermolecular one N–H···O (Figure 3, Table 1), three C–H···O (Figure 3, Figure 4, Table 1)and three C–H···π (Figure 5, Table 1) interactions (Das et al., 2005). The intermolecular hydrogen bonding and intermolecular C—H··· π interactions makes the phenyltriazene-1-oxide fragments of (I) in layer arrangement (Figure 2) in the molecular assembly.

Experimental

The title compound has been synthesized from nitobenzene, p-aminobenzoic acid, hydroquinone, p-hydroxybenzoic acid and n-bromoundecane using standard coupling processes involving multiple steps. The final product was crystallized by slow diffusion of ethanol into the dichloromethane solution of the title compound to yield crystals suitable for x-ray crystallography.

Refinement

The N-bound H atom was located in a difference Fourier map and its coordinates and isotropic displacement parameter were freely refined. C-bound H atoms were included at calculated positions as riding atoms with C–H set to 0.95 Å for (aromatic), 0.98 Å for (CH3) and 0.99 Å for (CH2) H atoms, with Uiso(H) = 1.2Ueq(C) (1.5Ueq for methyl group). Some low-angle reflections were excluded from the refinement, as they were probably obscured by the beam stop.

Figures

Fig. 1.
The asymmetric unit of (I), with displacement ellipsoids drawn at the 75% probability level. Dotted lines indicate the intramolecular N–H···O interaction.
Fig. 2.
The molecular packing of (I) showing the arrangements of the molecules in the bc-plane.
Fig. 3.
Dimerization of two molecules (I)through intermolecular N–H···O and C–H···O hydrogen bonding interactions shown by dotted lines (Symmetry code: (i) -x + 1, -y, -z + 2).
Fig. 4.
Parallel arrangement of (I) through intermolecular C–H···O interactions shown by dotted lines (Symmetry codes: (ii) x + 1, y, z; (iii) x - 1, y, z).
Fig. 5.
Parallel arrangement of (I) through intermolecular C—H···π interactions shown by dotted lines (Symmetry codes: (iv) x - 1, y + 1, z; (v) x, y - 1, z. Cg1 and Cg3 are the centroids of the C1–C6 and C14–C19 ...

Crystal data

C37H41N3O6Z = 2
Mr = 623.73F000 = 664
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.674 (3) ÅCell parameters from 5812 reflections
b = 12.039 (7) Åθ = 1.7–25.5º
c = 24.931 (15) ŵ = 0.09 mm1
α = 101.779 (10)ºT = 150 (2) K
β = 92.826 (11)ºNeedle, pale yellow
γ = 96.565 (10)º0.33 × 0.09 × 0.04 mm
V = 1651.6 (17) Å3

Data collection

Bruker SMART APEX CCD area detector diffractometer5812 independent reflections
Radiation source: fine-focus sealed tube3464 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.072
T = 150(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.988, Tmax = 0.995k = −14→14
11715 measured reflectionsl = −29→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.096H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212  w = 1/[σ2(Fo2) + (0.082P)2 + 0.0843P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5812 reflectionsΔρmax = 0.31 e Å3
420 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H3A0.607 (9)0.051 (4)0.963 (2)0.052 (16)*
O10.6978 (5)−0.0912 (2)0.99661 (11)0.0257 (7)
O20.9170 (5)0.4217 (2)0.78920 (11)0.0230 (7)
O30.5858 (5)0.4763 (2)0.82795 (11)0.0214 (7)
O40.5943 (5)0.8656 (2)0.74197 (12)0.0266 (8)
O50.3127 (6)0.9292 (2)0.79658 (13)0.0349 (9)
O60.5596 (5)1.3488 (2)0.68317 (11)0.0246 (7)
N10.8297 (6)−0.0997 (3)0.95643 (14)0.0217 (9)
N20.8428 (6)−0.0295 (3)0.92334 (13)0.0205 (8)
N30.6991 (7)0.0500 (3)0.93561 (15)0.0221 (9)
C10.9117 (9)−0.2881 (4)0.96356 (18)0.0310 (12)
H10.7735−0.29540.98320.037*
C21.0507 (10)−0.3763 (4)0.9521 (2)0.0403 (14)
H21.0060−0.44590.96340.048*
C31.2551 (9)−0.3635 (4)0.92428 (19)0.0358 (12)
H31.3520−0.42350.91750.043*
C41.3173 (8)−0.2634 (4)0.90638 (17)0.0297 (11)
H41.4547−0.25570.88650.036*
C51.1826 (8)−0.1756 (4)0.91715 (17)0.0257 (11)
H51.2266−0.10630.90540.031*
C60.9815 (7)−0.1889 (3)0.94531 (16)0.0185 (10)
C70.7176 (8)0.1385 (3)0.90689 (16)0.0227 (11)
C80.8969 (8)0.1530 (4)0.87256 (18)0.0289 (11)
H81.01380.10190.86780.035*
C90.9056 (8)0.2408 (3)0.84549 (18)0.0266 (11)
H91.02870.24940.82160.032*
C100.7403 (8)0.3177 (3)0.85173 (16)0.0233 (10)
C110.5577 (8)0.3021 (3)0.88585 (17)0.0241 (11)
H110.43950.35250.89010.029*
C120.5485 (8)0.2143 (4)0.91320 (17)0.0263 (11)
H120.42490.20500.93690.032*
C130.7644 (7)0.4083 (3)0.81940 (16)0.0167 (9)
C140.5992 (7)0.5729 (3)0.80380 (16)0.0172 (9)
C150.7954 (7)0.6542 (3)0.81402 (16)0.0176 (9)
H150.93270.64320.83470.021*
C160.7896 (7)0.7526 (3)0.79363 (16)0.0168 (10)
H160.92360.80990.80000.020*
C170.5872 (7)0.7667 (3)0.76399 (17)0.0188 (10)
C180.3911 (7)0.6858 (3)0.75446 (17)0.0190 (10)
H180.25260.69740.73440.023*
C190.3974 (7)0.5858 (3)0.77461 (16)0.0198 (10)
H190.26420.52800.76810.024*
C200.4459 (8)0.9433 (3)0.76209 (17)0.0239 (10)
C210.4854 (7)1.0462 (3)0.73795 (16)0.0177 (10)
C220.6686 (8)1.0670 (3)0.70587 (18)0.0277 (11)
H220.77471.01150.69680.033*
C230.7018 (8)1.1675 (4)0.68634 (17)0.0273 (11)
H230.83021.18100.66450.033*
C240.5457 (8)1.2473 (3)0.69914 (17)0.0219 (10)
C250.3546 (8)1.2251 (3)0.72996 (17)0.0226 (10)
H250.24531.27930.73810.027*
C260.3238 (8)1.1258 (3)0.74858 (17)0.0226 (10)
H260.19111.11060.76900.027*
C270.7669 (8)1.3862 (3)0.65780 (18)0.0249 (11)
H27A0.77101.33790.62070.030*
H27B0.91271.38090.68010.030*
C280.7526 (8)1.5068 (3)0.65407 (18)0.0261 (11)
H28A0.75161.55310.69170.031*
H28B0.59921.51030.63420.031*
C290.9515 (8)1.5615 (3)0.62570 (18)0.0275 (11)
H29A0.94331.52170.58660.033*
H29B1.10711.55310.64320.033*
C300.9318 (8)1.6876 (3)0.62928 (18)0.0287 (11)
H30A0.94621.72620.66860.034*
H30B0.77061.69440.61420.034*
C311.1121 (9)1.7520 (4)0.5999 (2)0.0328 (12)
H31A1.27441.74880.61550.039*
H31B1.10101.71410.56050.039*
C321.0726 (8)1.8755 (4)0.60495 (18)0.0291 (11)
H32A1.09651.91360.64430.035*
H32B0.90451.87740.59290.035*
C331.2298 (9)1.9452 (3)0.57279 (18)0.0304 (12)
H33A1.39781.94880.58650.037*
H33B1.21381.90560.53360.037*
C341.1690 (8)2.0658 (4)0.57715 (18)0.0286 (11)
H34A1.18432.10480.61640.034*
H34B1.00062.06170.56360.034*
C351.3232 (9)2.1382 (4)0.54541 (18)0.0331 (12)
H35A1.49122.14470.55970.040*
H35B1.31172.09850.50630.040*
C361.2542 (9)2.2568 (3)0.5491 (2)0.0367 (13)
H36A1.26912.29690.58820.044*
H36B1.08502.25010.53560.044*
C371.4037 (10)2.3293 (4)0.5165 (2)0.0529 (16)
H37A1.39812.28820.47810.079*
H37B1.56882.34390.53220.079*
H37C1.34022.40210.51810.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0294 (19)0.0308 (18)0.0201 (16)0.0072 (15)0.0124 (14)0.0086 (14)
O20.0202 (18)0.0129 (15)0.0377 (18)0.0026 (13)0.0121 (14)0.0070 (13)
O30.0252 (18)0.0126 (15)0.0298 (17)0.0039 (13)0.0115 (14)0.0098 (13)
O40.0294 (19)0.0198 (16)0.0383 (18)0.0104 (14)0.0163 (15)0.0166 (14)
O50.033 (2)0.0234 (17)0.056 (2)0.0066 (15)0.0228 (17)0.0189 (16)
O60.0303 (19)0.0099 (15)0.0358 (17)−0.0013 (13)0.0065 (15)0.0115 (13)
N10.023 (2)0.0153 (19)0.025 (2)0.0037 (16)0.0046 (17)−0.0024 (16)
N20.027 (2)0.0101 (18)0.027 (2)0.0056 (16)0.0115 (17)0.0065 (16)
N30.025 (2)0.020 (2)0.025 (2)0.0096 (17)0.0082 (18)0.0086 (17)
C10.045 (3)0.022 (3)0.029 (3)0.010 (2)0.007 (2)0.008 (2)
C20.061 (4)0.027 (3)0.049 (3)0.029 (3)0.018 (3)0.028 (2)
C30.035 (3)0.032 (3)0.043 (3)0.021 (2)0.000 (2)0.006 (2)
C40.029 (3)0.028 (3)0.028 (3)0.003 (2)0.002 (2)−0.003 (2)
C50.021 (3)0.022 (2)0.029 (2)0.003 (2)0.001 (2)−0.007 (2)
C60.015 (2)0.015 (2)0.024 (2)−0.0011 (18)0.0017 (19)0.0015 (18)
C70.030 (3)0.016 (2)0.019 (2)−0.004 (2)0.004 (2)−0.0008 (19)
C80.026 (3)0.023 (2)0.045 (3)0.011 (2)0.009 (2)0.018 (2)
C90.024 (3)0.025 (3)0.035 (3)0.004 (2)0.013 (2)0.012 (2)
C100.027 (3)0.017 (2)0.023 (2)−0.005 (2)0.000 (2)0.0015 (19)
C110.021 (3)0.022 (2)0.035 (3)0.009 (2)0.014 (2)0.013 (2)
C120.029 (3)0.030 (3)0.024 (2)0.008 (2)0.012 (2)0.012 (2)
C130.015 (2)0.011 (2)0.022 (2)0.0009 (18)0.0038 (19)−0.0020 (18)
C140.018 (2)0.010 (2)0.024 (2)−0.0005 (18)0.0022 (19)0.0087 (18)
C150.014 (2)0.015 (2)0.024 (2)0.0005 (18)−0.0001 (18)0.0059 (18)
C160.006 (2)0.011 (2)0.030 (2)−0.0058 (17)0.0013 (18)0.0000 (18)
C170.014 (2)0.016 (2)0.027 (2)0.0025 (18)0.0104 (19)0.0034 (19)
C180.010 (2)0.015 (2)0.033 (2)0.0012 (18)0.0071 (19)0.0068 (19)
C190.014 (2)0.008 (2)0.034 (2)−0.0077 (17)0.004 (2)−0.0001 (19)
C200.022 (3)0.021 (2)0.028 (2)0.001 (2)0.003 (2)0.006 (2)
C210.016 (2)0.0035 (19)0.032 (2)−0.0044 (17)−0.0011 (19)0.0044 (18)
C220.031 (3)0.014 (2)0.041 (3)0.002 (2)0.010 (2)0.011 (2)
C230.025 (3)0.028 (3)0.029 (3)0.003 (2)0.008 (2)0.004 (2)
C240.025 (3)0.016 (2)0.026 (2)0.000 (2)0.008 (2)0.0074 (19)
C250.021 (3)0.010 (2)0.035 (3)0.0000 (19)0.002 (2)0.0002 (19)
C260.017 (2)0.020 (2)0.030 (2)−0.0018 (19)0.009 (2)0.005 (2)
C270.032 (3)0.015 (2)0.029 (2)0.000 (2)0.012 (2)0.0089 (19)
C280.027 (3)0.022 (2)0.031 (3)0.007 (2)0.010 (2)0.006 (2)
C290.032 (3)0.026 (3)0.025 (2)0.001 (2)0.004 (2)0.007 (2)
C300.029 (3)0.022 (3)0.037 (3)0.002 (2)0.005 (2)0.012 (2)
C310.034 (3)0.027 (3)0.041 (3)0.005 (2)0.007 (2)0.012 (2)
C320.029 (3)0.032 (3)0.028 (2)0.003 (2)0.010 (2)0.011 (2)
C330.037 (3)0.020 (2)0.033 (3)−0.006 (2)0.008 (2)0.005 (2)
C340.018 (3)0.030 (3)0.036 (3)−0.010 (2)−0.003 (2)0.010 (2)
C350.041 (3)0.030 (3)0.029 (3)−0.002 (2)0.005 (2)0.011 (2)
C360.046 (3)0.015 (2)0.046 (3)−0.013 (2)−0.004 (3)0.009 (2)
C370.073 (4)0.031 (3)0.055 (4)−0.013 (3)−0.011 (3)0.024 (3)

Geometric parameters (Å, °)

O1—N11.274 (4)C19—H190.9500
O2—C131.193 (4)C20—C211.484 (6)
O3—C131.372 (5)C21—C221.373 (5)
O3—C141.410 (4)C21—C261.397 (6)
O4—C201.366 (5)C22—C231.391 (6)
O4—C171.407 (5)C22—H220.9500
O5—C201.197 (5)C23—C241.381 (6)
O6—C241.356 (5)C23—H230.9500
O6—C271.433 (5)C24—C251.392 (5)
N1—N21.295 (4)C25—C261.365 (6)
N1—C61.444 (5)C25—H250.9500
N2—N31.326 (5)C26—H260.9500
N3—C71.397 (5)C27—C281.485 (6)
N3—H3A0.89 (5)C27—H27A0.9900
C1—C21.385 (6)C27—H27B0.9900
C1—C61.386 (6)C28—C291.518 (6)
C1—H10.9500C28—H28A0.9900
C2—C31.390 (6)C28—H28B0.9900
C2—H20.9500C29—C301.520 (6)
C3—C41.384 (6)C29—H29A0.9900
C3—H30.9500C29—H29B0.9900
C4—C51.365 (6)C30—C311.520 (6)
C4—H40.9500C30—H30A0.9900
C5—C61.379 (5)C30—H30B0.9900
C5—H50.9500C31—C321.509 (6)
C7—C81.380 (6)C31—H31A0.9900
C7—C121.391 (6)C31—H31B0.9900
C8—C91.363 (6)C32—C331.522 (5)
C8—H80.9500C32—H32A0.9900
C9—C101.384 (6)C32—H32B0.9900
C9—H90.9500C33—C341.514 (6)
C10—C111.393 (5)C33—H33A0.9900
C10—C131.482 (6)C33—H33B0.9900
C11—C121.368 (6)C34—C351.525 (6)
C11—H110.9500C34—H34A0.9900
C12—H120.9500C34—H34B0.9900
C14—C191.367 (6)C35—C361.510 (6)
C14—C151.373 (6)C35—H35A0.9900
C15—C161.384 (5)C35—H35B0.9900
C15—H150.9500C36—C371.527 (6)
C16—C171.381 (6)C36—H36A0.9900
C16—H160.9500C36—H36B0.9900
C17—C181.369 (6)C37—H37A0.9800
C18—C191.399 (5)C37—H37B0.9800
C18—H180.9500C37—H37C0.9800
C13—O3—C14117.5 (3)C24—C23—H23120.4
C20—O4—C17117.0 (3)C22—C23—H23120.4
C24—O6—C27119.1 (3)O6—C24—C23125.0 (4)
O1—N1—N2123.7 (3)O6—C24—C25115.1 (4)
O1—N1—C6121.5 (3)C23—C24—C25119.9 (4)
N2—N1—C6114.9 (3)C26—C25—C24120.2 (4)
N1—N2—N3111.9 (3)C26—C25—H25119.9
N2—N3—C7117.2 (4)C24—C25—H25119.9
N2—N3—H3A121 (3)C25—C26—C21120.6 (4)
C7—N3—H3A122 (3)C25—C26—H26119.7
C2—C1—C6117.6 (4)C21—C26—H26119.7
C2—C1—H1121.2O6—C27—C28107.1 (3)
C6—C1—H1121.2O6—C27—H27A110.3
C1—C2—C3120.5 (4)C28—C27—H27A110.3
C1—C2—H2119.7O6—C27—H27B110.3
C3—C2—H2119.7C28—C27—H27B110.3
C4—C3—C2119.9 (4)H27A—C27—H27B108.6
C4—C3—H3120.0C27—C28—C29115.6 (4)
C2—C3—H3120.0C27—C28—H28A108.4
C5—C4—C3120.4 (4)C29—C28—H28A108.4
C5—C4—H4119.8C27—C28—H28B108.4
C3—C4—H4119.8C29—C28—H28B108.4
C4—C5—C6119.0 (4)H28A—C28—H28B107.4
C4—C5—H5120.5C28—C29—C30110.8 (4)
C6—C5—H5120.5C28—C29—H29A109.5
C5—C6—C1122.4 (4)C30—C29—H29A109.5
C5—C6—N1121.1 (4)C28—C29—H29B109.5
C1—C6—N1116.5 (4)C30—C29—H29B109.5
C8—C7—C12119.1 (4)H29A—C29—H29B108.1
C8—C7—N3122.3 (4)C29—C30—C31116.6 (4)
C12—C7—N3118.6 (4)C29—C30—H30A108.1
C9—C8—C7119.7 (4)C31—C30—H30A108.1
C9—C8—H8120.1C29—C30—H30B108.1
C7—C8—H8120.1C31—C30—H30B108.1
C8—C9—C10122.0 (4)H30A—C30—H30B107.3
C8—C9—H9119.0C32—C31—C30112.1 (4)
C10—C9—H9119.0C32—C31—H31A109.2
C9—C10—C11118.3 (4)C30—C31—H31A109.2
C9—C10—C13117.2 (4)C32—C31—H31B109.2
C11—C10—C13124.4 (4)C30—C31—H31B109.2
C12—C11—C10120.0 (4)H31A—C31—H31B107.9
C12—C11—H11120.0C31—C32—C33116.4 (4)
C10—C11—H11120.0C31—C32—H32A108.2
C11—C12—C7121.0 (4)C33—C32—H32A108.2
C11—C12—H12119.5C31—C32—H32B108.2
C7—C12—H12119.5C33—C32—H32B108.2
O2—C13—O3123.2 (4)H32A—C32—H32B107.3
O2—C13—C10125.4 (4)C34—C33—C32113.2 (4)
O3—C13—C10111.4 (3)C34—C33—H33A108.9
C19—C14—C15122.5 (4)C32—C33—H33A108.9
C19—C14—O3115.9 (3)C34—C33—H33B108.9
C15—C14—O3121.3 (4)C32—C33—H33B108.9
C14—C15—C16118.8 (4)H33A—C33—H33B107.7
C14—C15—H15120.6C33—C34—C35114.7 (4)
C16—C15—H15120.6C33—C34—H34A108.6
C17—C16—C15119.4 (4)C35—C34—H34A108.6
C17—C16—H16120.3C33—C34—H34B108.6
C15—C16—H16120.3C35—C34—H34B108.6
C18—C17—C16121.6 (4)H34A—C34—H34B107.6
C18—C17—O4121.3 (4)C36—C35—C34113.5 (4)
C16—C17—O4117.1 (4)C36—C35—H35A108.9
C17—C18—C19119.2 (4)C34—C35—H35A108.9
C17—C18—H18120.4C36—C35—H35B108.9
C19—C18—H18120.4C34—C35—H35B108.9
C14—C19—C18118.6 (4)H35A—C35—H35B107.7
C14—C19—H19120.7C35—C36—C37114.0 (4)
C18—C19—H19120.7C35—C36—H36A108.7
O5—C20—O4122.6 (4)C37—C36—H36A108.7
O5—C20—C21126.5 (4)C35—C36—H36B108.7
O4—C20—C21110.8 (3)C37—C36—H36B108.7
C22—C21—C26118.6 (4)H36A—C36—H36B107.6
C22—C21—C20124.1 (4)C36—C37—H37A109.5
C26—C21—C20117.2 (4)C36—C37—H37B109.5
C21—C22—C23121.3 (4)H37A—C37—H37B109.5
C21—C22—H22119.3C36—C37—H37C109.5
C23—C22—H22119.3H37A—C37—H37C109.5
C24—C23—C22119.1 (4)H37B—C37—H37C109.5
O1—N1—N2—N3−1.5 (5)C15—C16—C17—C180.3 (6)
C6—N1—N2—N3179.8 (3)C15—C16—C17—O4−177.1 (3)
N1—N2—N3—C7172.8 (3)C20—O4—C17—C1867.9 (5)
C6—C1—C2—C31.2 (7)C20—O4—C17—C16−114.7 (4)
C1—C2—C3—C4−1.8 (8)C16—C17—C18—C19−0.9 (6)
C2—C3—C4—C51.7 (7)O4—C17—C18—C19176.4 (3)
C3—C4—C5—C6−1.1 (7)C15—C14—C19—C180.0 (6)
C4—C5—C6—C10.5 (7)O3—C14—C19—C18173.5 (3)
C4—C5—C6—N1−178.3 (4)C17—C18—C19—C140.7 (6)
C2—C1—C6—C5−0.6 (7)C17—O4—C20—O5−0.6 (6)
C2—C1—C6—N1178.3 (4)C17—O4—C20—C21176.0 (3)
O1—N1—C6—C5−155.3 (4)O5—C20—C21—C22168.0 (5)
N2—N1—C6—C523.4 (6)O4—C20—C21—C22−8.5 (6)
O1—N1—C6—C125.8 (6)O5—C20—C21—C26−12.5 (7)
N2—N1—C6—C1−155.5 (4)O4—C20—C21—C26171.1 (4)
N2—N3—C7—C8−8.6 (6)C26—C21—C22—C233.2 (6)
N2—N3—C7—C12171.3 (4)C20—C21—C22—C23−177.3 (4)
C12—C7—C8—C90.0 (7)C21—C22—C23—C24−0.6 (7)
N3—C7—C8—C9179.9 (4)C27—O6—C24—C23−9.4 (6)
C7—C8—C9—C100.7 (7)C27—O6—C24—C25171.6 (4)
C8—C9—C10—C11−1.5 (7)C22—C23—C24—O6179.3 (4)
C8—C9—C10—C13−178.8 (4)C22—C23—C24—C25−1.7 (7)
C9—C10—C11—C121.6 (6)O6—C24—C25—C26−179.6 (4)
C13—C10—C11—C12178.7 (4)C23—C24—C25—C261.4 (6)
C10—C11—C12—C7−1.0 (7)C24—C25—C26—C211.2 (6)
C8—C7—C12—C110.2 (7)C22—C21—C26—C25−3.5 (6)
N3—C7—C12—C11−179.7 (4)C20—C21—C26—C25176.9 (4)
C14—O3—C13—O2−6.4 (5)C24—O6—C27—C28−170.1 (4)
C14—O3—C13—C10174.1 (3)O6—C27—C28—C29−177.2 (4)
C9—C10—C13—O2−1.4 (6)C27—C28—C29—C30−174.4 (4)
C11—C10—C13—O2−178.5 (4)C28—C29—C30—C31−176.8 (4)
C9—C10—C13—O3178.0 (4)C29—C30—C31—C32178.6 (4)
C11—C10—C13—O30.9 (6)C30—C31—C32—C33−174.8 (4)
C13—O3—C14—C19130.4 (4)C31—C32—C33—C34176.4 (4)
C13—O3—C14—C15−56.0 (5)C32—C33—C34—C35180.0 (4)
C19—C14—C15—C16−0.6 (6)C33—C34—C35—C36178.3 (4)
O3—C14—C15—C16−173.7 (3)C34—C35—C36—C37−178.7 (4)
C14—C15—C16—C170.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.88 (5)2.16 (5)2.501 (5)103 (4)
N3—H3A···O1i0.88 (5)2.10 (5)2.909 (5)153 (5)
C12—H12···O1i0.952.443.225 (6)140
C16—H16···O5ii0.952.513.436 (5)166
C19—H19···O2iii0.952.373.260 (5)157
C4—H4···Cg3iv0.952.713.486 (5)139
C15—H15···Cg1v0.952.603.342 (5)135
C28—H28A···Cg3v0.992.693.642 (5)161

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x−1, y+1, z; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2103).

References

  • Bruker (1998). SMART Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2000). SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Ciunik, Z., Wolny, J. A., Rudolf, M. F. & Wołowiec, S. (2002). J. Chem. Soc. Dalton Trans. pp. 885–895.
  • Das, P., Neogi, D. N., Upreti, S., Mandal, P. K. & Bandyopadhyay, P. (2005). Acta Cryst. E61, o3602–o3604.
  • Hörner, M., de Oliveira, J. S., Bordinhao, J. & Beck, J. (2002). Acta Cryst. C58, m586–m587. [PubMed]
  • Rapta, P., Omelka, L., Stasko, A., Dauth, J., Deubzer, B. & Weis, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 255–261.
  • Samanta, C., Saha, S. C. & Mukherjee, A. K. (1997). Acta Cryst. C53, 1657–1658.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vaughan, K., Cameron, L. M., Christie, S. & Zaworotko, M. J. (1992). Acta Cryst. C48, 1985–1988.
  • Wilman, D. E. V. (1988). Cancer Treat. Rev.15, 69–72. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography