PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m512–m513.
Published online 2008 March 5. doi:  10.1107/S1600536808005485
PMCID: PMC2960913

Chloridotris[tris­(4-fluoro­phen­yl)phosphine]rhodium(I) methanol solvate

Abstract

In the title compound, [RhCl{P(p-FC6H4)3}3]·CH3OH, the Rh atom adopts a distorted square-planar geometry. Rh, Cl and one P atom lie on a mirror plane, as does the solvent molecule. There are two inter­molecular hydrogen bonds, one between the methanol O atom and an aryl H atom (2.51 Å), and one between the Cl atom and the hydr­oxy H atom of methanol [2.34 (3) Å]. The complex precipitates in trace amounts from a reaction between RhCl(cod)(thp) [cod is 1,5-cyclo­octa­diene and thp is tris­(hydroxy­meth­yl)phos­phine] and P(p-FC6H4)3 under argon in CD3OD. Two C6H4-F units are disordered over two positions; for one the site occupancy factors are ca. 0.53 and 0.47, for the other the values are ca. 0.64 and 0.36. The methyl H atoms of the solvent molecule are disordered across the mirror plane.

Related literature

For related literature, see: Beck et al. (1999 [triangle]) and references therein; Bennett & Donaldson (1977 [triangle]); Bennett et al. (1971 [triangle]); Evans et al. (1999 [triangle]); Higham et al. (2004 [triangle]); Hoye et al. (1993 [triangle]); Jones et al. (1980 [triangle]); Lorenzini et al. (2007a [triangle],b [triangle],c [triangle], 2008a [triangle],b [triangle]); Montelatici et al. (1968 [triangle]); Young et al. (1965 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m512-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C18H12F3P)3]·CH4O
  • M r = 1119.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m512-efi1.jpg
  • a = 10.831 (3) Å
  • b = 23.724 (7) Å
  • c = 9.845 (3) Å
  • β = 108.213 (8)°
  • V = 2403.0 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 173.0 (1) K
  • 0.30 × 0.15 × 0.03 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.544, T max = 0.983
  • 10921 measured reflections
  • 3312 independent reflections
  • 3094 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.075
  • S = 1.03
  • 3312 reflections
  • 372 parameters
  • 15 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 812 Friedel pairs
  • Flack parameter: −0.03 (3)

Data collection: SAINT (Bruker, 2003 [triangle]); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005485/rk2075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005485/rk2075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

supplementary crystallographic information

Comment

We have reported recently on the syntheses of water-soluble RhI–thp complexes such as RhCl(cod)(thp), where thp = tris(hydroxymethyl)phosphine, P(CH2OH)3, and cod = 1,5-cyclooctadiene (Lorenzini et al., 2007a). This complex reacts with PRR'2 phosphines (R = or ≠ R') in solution under Ar to generate, concomitantly with R'H, the phosphine-phosphinite derivatives RhCl(PRR'2)[P,P-R'(R)POCH2P(CH2OH)2] in two isomeric cis- and trans-forms, where cis and trans refer to the disposition of the P atoms with the R and R' substituents. In some of these systems, trace amounts of the trans-RhCl(CO)(PRR'2)2 complexes are formed (Lorenzini et al., 2007b), and these have been characterized by X-ray crystallography, for example, for the PEtPh2 and P(p-tolyl)3 systems (Lorenzini et al., 2008b; Lorenzini et al., submitted). The CO ligand almost certainly derives from the formaldehyde (Beck et al., 1999), which can be readily formed from transition metal–thp species (Higham et al., 2004; Hoye et al., 1993). The RhCl(cod)(thp)/phosphine reactions, when carried out under H2, give high yield formation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3 (where R' = Ph, and R = Me or Cy), although in some systems (e.g. with PMePh2) partial loss of H2 occurs and the RhCl(PRR'2)3 species has been detected in solution (Lorenzini et al., 2007c). Now, during a reaction of the Rh precursor with P(p-FC6H4)3 in MeOH under Ar, we have found that a few crystals of RhCl[P(p-FC6H4)3]3.CH3OH in low overall yield are precipitated.

The so-called "Wilkinson" hydrogenation catalyst, RhCl(PPh3)3, was first reported in 1965 (Young et al., 1965), and since then 22 Rh(I) complexes of general formula RhCl(PRR'2)3 have been structurally characterized; the first such complex was RhCl(PF2NEt2)2(PPh3) (Bennett et al., 1971), while there are just 3 of the type RhCl(PR3)3 where R = Ph (Bennett & Donaldson, 1977), Me (Jones et al., 1980) and OPh (Evans et al., 1999). The title P(p-FC6H4)3 complex was first isolated in 1968 (Montelatici et al., 1968), but an X-ray structure has not been reported.

Experimental

General. The RhCl(1,5-cod)(thp) complex was synthesized by our recently reported method (Lorenzini et al., 2007a); P(p-FC6H4)3 was used as received from Strem Chemicals, CD3OD (Cambridge Isotope Laboratory) was used as received. The Rh-phosphine reaction was carried out under Ar using standard Schlenk techniques.

RhCl[P(p-FC6H4)3]3.CH3OH. Addition of P(p-FC6H4)3 (10 mg, 0.031 mmol) in CD3OD (0.5 ml) to a yellow CD3OD solution (0.5 ml) of RhCl(1,5-cod)(thp) (5.6 mg, 0.015 mmol) at room temperature under Ar results in the immediate formation of a brown solution. Over 12 h, a few X-ray quality, yellow plate crystals of the solvated complex deposit from the solution.

Refinement

The material crystallizes with one molecule of solvent MeOH in the asymmetric unit. Two of the C6H4F substituents are disordered in two orientations and these were refined with constraints to maintain reasonable geometry and thermal parameters. All non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were placed in calculated positions and not refined, except for H10 which was located in a difference map and refined isotropically.

Figures

Fig. 1.
The molecular structure of title compound, with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Only major part of disordered molecular moieties are presented. ...

Crystal data

[RhCl(C18H12F3P1)3]·CH4OF000 = 1132
Mr = 1119.14Dx = 1.547 Mg m3
Monoclinic, CmMo Kα radiation λ = 0.71073 Å
a = 10.831 (3) ÅCell parameters from 3285 reflections
b = 23.724 (7) Åθ = 3.3–23.2º
c = 9.845 (3) ŵ = 0.59 mm1
β = 108.213 (8)ºT = 173.0 (1) K
V = 2403.0 (12) Å3Plate, yellow
Z = 20.30 × 0.15 × 0.03 mm

Data collection

Bruker X8 APEXII diffractometer3312 independent reflections
Radiation source: Fine-focus sealed tube3094 reflections with I > 2σ(I)
Monochromator: GraphiteRint = 0.048
T = 173.0(1) Kθmax = 26.3º
Area detector scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2003)h = −13→12
Tmin = 0.544, Tmax = 0.983k = −29→29
10921 measured reflectionsl = −4→12

Refinement

Refinement on F2Hydrogen site location: Geom
Least-squares matrix: FullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0308P)2 + 3.2966P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.016
S = 1.03Δρmax = 0.67 e Å3
3312 reflectionsΔρmin = −0.47 e Å3
372 parametersExtinction correction: None
15 restraintsAbsolute structure: Flack (1983), 812 Friedel pairs
Primary atom site location: DirectFlack parameter: −0.03 (3)
Secondary atom site location: Difmap

Special details

Geometry. All s.u.s' (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.s' are taken into account individually in the estimation of s.u.s' in distances, angles and torsion angles; correlations between s.u.s' in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.s' is used for estimating s.u.s' involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2479 (3)0.00000.8201 (5)0.0317 (16)
C20.3484 (5)0.0002 (5)0.9489 (4)0.0402 (19)
H20.3302−0.00511.03640.048*0.50
C30.4758 (4)0.0083 (6)0.9494 (6)0.049 (4)0.50
H30.54440.00981.03750.059*0.50
C40.5028 (4)0.0142 (4)0.8210 (8)0.044 (4)0.50
C50.4023 (6)0.0127 (4)0.6922 (6)0.038 (4)0.50
H50.42070.01670.60450.046*0.50
C60.2748 (5)0.0053 (4)0.6917 (4)0.042 (2)0.50
H60.20620.00400.60370.051*0.50
C70.0049 (17)−0.0575 (8)0.721 (2)0.018 (3)0.533 (12)
C80.0491 (13)−0.0863 (8)0.6226 (19)0.039 (3)0.533 (12)
H80.1295−0.07610.60980.047*0.533 (12)
C9−0.0245 (12)−0.1298 (7)0.5426 (13)0.048 (4)0.533 (12)
H90.0057−0.14950.47500.058*0.533 (12)
C10−0.1423 (11)−0.1447 (5)0.5614 (13)0.041 (3)0.533 (12)
C11−0.1864 (11)−0.1159 (6)0.6603 (16)0.042 (3)0.533 (12)
H11−0.2669−0.12600.67310.050*0.533 (12)
C12−0.1129 (16)−0.0723 (8)0.7403 (19)0.024 (2)0.533 (12)
H12−0.1430−0.05270.80780.029*0.533 (12)
F2−0.2133 (11)−0.1847 (4)0.4740 (9)0.060 (3)0.533 (12)
C13−0.0508 (5)0.1306 (2)1.1071 (5)0.0280 (11)
C14−0.1577 (5)0.0973 (2)1.0925 (7)0.0429 (14)
H14−0.15350.05811.07410.051*
C15−0.2723 (6)0.1201 (3)1.1043 (7)0.0586 (19)
H15−0.34640.09691.09280.070*
C16−0.2767 (6)0.1756 (3)1.1322 (7)0.0537 (17)
C17−0.1751 (8)0.2093 (3)1.1419 (10)0.076 (3)
H17−0.18040.24861.15840.091*
C18−0.0642 (7)0.1867 (2)1.1280 (8)0.061 (2)
H180.00670.21111.13300.073*
C190.2189 (3)0.11444 (16)1.2662 (4)0.0291 (11)0.637 (11)
C200.2075 (5)0.1632 (2)1.3398 (6)0.037 (2)0.637 (11)
H200.13440.18721.30320.044*0.637 (11)
C210.3031 (5)0.1768 (2)1.4668 (6)0.049 (3)0.637 (11)
H210.29540.21011.51710.058*0.637 (11)
C220.4101 (4)0.1417 (2)1.5203 (4)0.0458 (15)0.637 (11)
C230.4214 (5)0.0929 (2)1.4468 (6)0.054 (3)0.637 (11)
H230.49450.06891.48330.064*0.637 (11)
C240.3258 (5)0.0793 (2)1.3197 (6)0.050 (3)0.637 (11)
H240.33360.04601.26940.060*0.637 (11)
C250.1512 (5)0.14409 (19)0.9781 (5)0.0245 (10)
C260.0727 (5)0.1841 (2)0.8909 (6)0.0413 (13)
H26−0.01570.18700.88760.050*
C270.1193 (5)0.2199 (2)0.8088 (6)0.0450 (14)
H270.06380.24730.75000.054*
C280.2439 (5)0.2159 (2)0.8121 (6)0.0354 (12)
C290.3242 (6)0.1770 (3)0.8920 (8)0.0560 (18)
H290.41160.17400.89180.067*
C300.2765 (5)0.1413 (2)0.9747 (8)0.0524 (18)
H300.33300.11371.03150.063*
F10.6241 (6)0.0176 (3)0.8185 (10)0.078 (3)0.50
F3−0.3864 (4)0.19782 (18)1.1463 (5)0.0806 (13)
F40.5006 (3)0.1544 (2)1.6443 (4)0.0669 (13)
F50.2899 (3)0.25244 (13)0.7328 (4)0.0531 (9)
P10.08546 (18)0.00000.84167 (19)0.0197 (4)
P20.09765 (13)0.09686 (4)1.09570 (12)0.0229 (3)
Cl10.05281 (19)0.00001.2983 (2)0.0321 (5)
Rh10.08365 (4)0.00001.06599 (4)0.01826 (13)
O10.7332 (8)0.00000.2629 (9)0.120 (4)
C310.7118 (13)0.00000.3817 (15)0.104 (5)
H31A0.7165−0.03870.41790.156*0.50
H31B0.62500.01540.36950.156*0.50
H31C0.77720.02330.45000.156*0.50
C7B−0.0176 (19)−0.0581 (10)0.739 (2)0.018 (3)0.467 (12)
C8B0.0088 (14)−0.0833 (10)0.623 (2)0.039 (3)0.467 (12)
H8B0.0889−0.07590.60620.047*0.467 (12)
C9B−0.0818 (13)−0.1192 (8)0.5333 (15)0.048 (4)0.467 (12)
H9B−0.0637−0.13640.45450.058*0.467 (12)
C10B−0.1989 (12)−0.1299 (6)0.5585 (15)0.041 (3)0.467 (12)
C11B−0.2254 (14)−0.1048 (8)0.6739 (19)0.042 (3)0.467 (12)
H11B−0.3054−0.11210.69120.050*0.467 (12)
C12B−0.135 (2)−0.0689 (10)0.764 (2)0.024 (2)0.467 (12)
H12B−0.1528−0.05170.84300.029*0.467 (12)
F2B−0.2822 (12)−0.1659 (5)0.4806 (11)0.061 (3)0.467 (12)
C19B0.2189 (3)0.11444 (16)1.2662 (4)0.0291 (11)0.363 (11)
C20B0.1878 (8)0.1313 (8)1.3842 (10)0.038 (4)0.363 (11)
H20B0.09900.13681.37660.046*0.363 (11)
C21B0.2825 (8)0.1408 (8)1.5153 (10)0.047 (5)0.363 (11)
H21B0.25890.14641.59950.056*0.363 (11)
C22B0.4101 (4)0.1417 (2)1.5203 (4)0.0458 (15)0.363 (11)
C23B0.4461 (8)0.1307 (11)1.4004 (11)0.067 (7)0.363 (11)
H23B0.53490.13301.40490.080*0.363 (11)
C24B0.3518 (8)0.1163 (11)1.2728 (11)0.079 (9)0.363 (11)
H24B0.37610.10771.19050.095*0.363 (11)
H1O0.833 (5)0.00000.282 (14)0.11 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.029 (4)0.038 (4)0.026 (4)0.0000.006 (3)0.000
C20.028 (4)0.060 (5)0.028 (4)0.0000.001 (3)0.000
C30.020 (4)0.074 (12)0.048 (6)−0.007 (7)0.002 (4)0.004 (8)
C40.032 (5)0.023 (9)0.083 (9)0.005 (4)0.028 (6)−0.001 (5)
C50.043 (6)0.022 (11)0.060 (7)−0.002 (4)0.033 (6)0.002 (4)
C60.028 (4)0.068 (7)0.029 (4)−0.002 (10)0.008 (3)−0.003 (10)
C70.024 (6)0.028 (3)0.008 (5)−0.006 (4)0.011 (4)0.003 (3)
C80.051 (8)0.047 (4)0.031 (3)−0.025 (7)0.031 (6)−0.012 (3)
C90.065 (11)0.048 (7)0.033 (4)−0.021 (8)0.016 (7)−0.021 (4)
C100.026 (7)0.037 (7)0.034 (4)−0.011 (5)−0.028 (6)0.005 (5)
C110.011 (8)0.059 (7)0.044 (5)−0.008 (6)−0.009 (5)0.023 (5)
C120.017 (6)0.039 (4)0.020 (6)−0.007 (4)0.009 (4)0.006 (3)
F20.072 (7)0.051 (5)0.044 (5)−0.021 (5)−0.001 (5)−0.021 (4)
C130.037 (3)0.026 (3)0.023 (3)0.010 (2)0.013 (2)0.008 (2)
C140.033 (3)0.042 (3)0.047 (4)0.011 (2)0.002 (3)−0.015 (3)
C150.031 (3)0.073 (5)0.065 (5)0.014 (3)0.004 (3)−0.021 (4)
C160.059 (4)0.063 (4)0.049 (4)0.040 (3)0.030 (3)0.023 (3)
C170.116 (6)0.033 (4)0.116 (7)0.039 (4)0.089 (6)0.027 (4)
C180.084 (5)0.028 (3)0.098 (6)0.011 (3)0.069 (4)0.010 (3)
C190.037 (3)0.023 (2)0.028 (3)0.002 (2)0.010 (2)−0.001 (2)
C200.027 (4)0.040 (5)0.040 (5)−0.004 (4)0.006 (4)−0.016 (4)
C210.045 (5)0.046 (6)0.055 (7)−0.005 (5)0.015 (5)−0.040 (5)
C220.043 (3)0.062 (4)0.029 (3)−0.005 (3)0.005 (3)−0.007 (3)
C230.062 (7)0.046 (6)0.038 (6)0.014 (5)−0.006 (5)−0.004 (5)
C240.057 (6)0.037 (6)0.036 (6)0.010 (5)−0.012 (5)−0.010 (5)
C250.029 (3)0.022 (2)0.021 (2)−0.002 (2)0.005 (2)−0.0011 (19)
C260.034 (3)0.049 (3)0.043 (3)0.008 (3)0.016 (3)0.019 (3)
C270.047 (3)0.047 (3)0.038 (3)0.009 (3)0.010 (3)0.020 (3)
C280.047 (3)0.032 (3)0.030 (3)−0.014 (2)0.015 (2)−0.005 (2)
C290.038 (3)0.045 (4)0.093 (6)−0.004 (3)0.032 (4)0.014 (4)
C300.033 (3)0.037 (3)0.090 (6)0.004 (3)0.023 (3)0.020 (3)
F10.032 (3)0.097 (10)0.119 (7)−0.008 (3)0.041 (4)−0.013 (5)
F30.075 (3)0.090 (3)0.090 (3)0.056 (2)0.043 (2)0.019 (2)
F40.047 (2)0.094 (3)0.046 (2)−0.003 (2)−0.0053 (18)−0.032 (2)
F50.074 (2)0.0430 (19)0.050 (2)−0.0210 (16)0.0305 (17)0.0044 (16)
P10.0215 (9)0.0229 (10)0.0141 (9)0.0000.0044 (7)0.000
P20.0313 (7)0.0197 (5)0.0174 (8)0.0021 (6)0.0073 (6)−0.0005 (4)
Cl10.0425 (12)0.0369 (11)0.0193 (9)0.0000.0133 (8)0.000
Rh10.0222 (3)0.0185 (2)0.0137 (2)0.0000.00499 (19)0.000
O10.072 (6)0.245 (13)0.037 (5)0.0000.006 (4)0.000
C310.086 (10)0.177 (16)0.060 (9)0.0000.038 (8)0.000
C7B0.024 (6)0.028 (3)0.008 (5)−0.006 (4)0.011 (4)0.003 (3)
C8B0.051 (8)0.047 (4)0.031 (3)−0.025 (7)0.031 (6)−0.012 (3)
C9B0.065 (11)0.048 (7)0.033 (4)−0.021 (8)0.016 (7)−0.021 (4)
C10B0.026 (7)0.037 (7)0.034 (4)−0.011 (5)−0.028 (6)0.005 (5)
C11B0.011 (8)0.059 (7)0.044 (5)−0.008 (6)−0.009 (5)0.023 (5)
C12B0.017 (6)0.039 (4)0.020 (6)−0.007 (4)0.009 (4)0.006 (3)
F2B0.059 (7)0.054 (7)0.046 (6)−0.026 (5)−0.017 (5)−0.012 (5)
C19B0.037 (3)0.023 (2)0.028 (3)0.002 (2)0.010 (2)−0.001 (2)
C20B0.032 (8)0.055 (12)0.031 (9)−0.011 (8)0.012 (7)−0.018 (8)
C21B0.044 (10)0.057 (13)0.037 (10)−0.028 (9)0.009 (8)−0.031 (9)
C22B0.043 (3)0.062 (4)0.029 (3)−0.005 (3)0.005 (3)−0.007 (3)
C23B0.026 (9)0.13 (2)0.049 (12)0.016 (11)0.014 (8)0.003 (12)
C24B0.080 (15)0.13 (2)0.015 (8)0.065 (15)0.002 (9)−0.008 (11)

Geometric parameters (Å, °)

C1—C21.3897C23—H230.9500
C1—C61.3888C24—H240.9500
C1—P11.836 (4)C25—C301.370 (7)
C2—C31.3922C25—C261.381 (7)
C2—H20.9500C25—P21.831 (5)
C3—C41.3900C26—C271.372 (7)
C3—H30.9500C26—H260.9500
C4—F11.324 (7)C27—C281.343 (7)
C4—C51.3900C27—H270.9500
C5—C61.3900C28—C291.343 (8)
C5—H50.9500C28—F51.360 (6)
C6—H60.9500C29—C301.381 (8)
C7—C81.3900C29—H290.9500
C7—C121.3900C30—H300.9500
C7—P11.838 (10)F1—F1i0.833 (15)
C8—C91.3900F1—C4i1.521 (8)
C8—H80.9500P1—C1i1.836 (4)
C9—C101.3900P1—C7i1.838 (10)
C9—H90.9500P1—C7B1.862 (13)
C10—F21.350 (13)P1—C7Bi1.862 (13)
C10—C111.3900P1—Rh12.215 (2)
C11—C121.3900P2—Rh12.3153 (12)
C11—H110.9500Cl1—Rh12.412 (2)
C12—H120.9500Rh1—P2i2.3153 (12)
C13—C181.362 (7)O1—C311.262 (15)
C13—C141.372 (7)O1—H1O1.07 (4)
C13—P21.830 (5)C31—H31A0.9800
C14—C151.391 (8)C31—H31B0.9800
C14—H140.9500C31—H31C0.9800
C15—C161.351 (9)C7B—C8B1.3900
C15—H150.9500C7B—C12B1.3900
C16—C171.339 (10)C8B—C9B1.3900
C16—F31.346 (6)C8B—H8B0.9500
C17—C181.361 (8)C9B—C10B1.3900
C17—H170.9500C9B—H9B0.9500
C18—H180.9500C10B—F2B1.303 (15)
C19—C201.3900C10B—C11B1.3900
C19—C241.3900C11B—C12B1.3900
C19—P21.827 (3)C11B—H11B0.9500
C20—C211.3900C12B—H12B0.9500
C20—H200.9500C20B—C21B1.393 (8)
C21—C221.3900C20B—H20B0.9500
C21—H210.9500C21B—H21B0.9500
C22—F41.340 (4)C23B—C24B1.392 (8)
C22—C231.3900C23B—H23B0.9500
C23—C241.3900C24B—H24B0.9500
C2—C1—C6120.2C27—C26—C25121.6 (5)
C2—C1—P1113.6 (3)C27—C26—H26119.2
C6—C1—P1125.9 (3)C25—C26—H26119.2
C1—C2—C3119.8C28—C27—C26119.6 (5)
C1—C2—H2120.1C28—C27—H27120.2
C3—C2—H2120.1C26—C27—H27120.2
C4—C3—C2120.0C29—C28—C27121.6 (5)
C4—C3—H3120.0C29—C28—F5119.2 (5)
C2—C3—H3120.0C27—C28—F5119.1 (5)
F1—C4—C5118.9 (6)C28—C29—C30118.3 (5)
F1—C4—C3120.9 (6)C28—C29—H29120.8
C5—C4—C3120.0C30—C29—H29120.8
C6—C5—C4120.0C25—C30—C29122.7 (5)
C6—C5—H5120.0C25—C30—H30118.7
C4—C5—H5120.0C29—C30—H30118.7
C5—C6—C1120.0C1i—P1—C7101.8 (5)
C5—C6—H6120.0C1—P1—C7101.8 (5)
C1—C6—H6120.0C1i—P1—C7i101.8 (5)
C8—C7—C12120.0C1—P1—C7i101.8 (5)
C8—C7—P1128.1 (9)C7—P1—C7i95.9 (17)
C12—C7—P1111.9 (9)C1i—P1—C7B111.7 (6)
C7—C8—C9120.0C1—P1—C7B111.7 (6)
C7—C8—H8120.0C7i—P1—C7B96.7 (3)
C9—C8—H8120.0C1i—P1—C7Bi111.7 (6)
C10—C9—C8120.0C1—P1—C7Bi111.7 (6)
C10—C9—H9120.0C7—P1—C7Bi96.7 (3)
C8—C9—H9120.0C7B—P1—C7Bi95.6 (19)
F2—C10—C9117.2 (9)C1i—P1—Rh1115.00 (17)
F2—C10—C11122.7 (9)C1—P1—Rh1115.00 (17)
C9—C10—C11120.0C7—P1—Rh1119.4 (7)
C12—C11—C10120.0C7i—P1—Rh1119.4 (7)
C12—C11—H11120.0C7B—P1—Rh1110.6 (8)
C10—C11—H11120.0C7Bi—P1—Rh1110.6 (8)
C11—C12—C7120.0C19—P2—C13103.7 (2)
C11—C12—H12120.0C19—P2—C2599.3 (2)
C7—C12—H12120.0C13—P2—C25103.3 (2)
C18—C13—C14116.9 (5)C19—P2—Rh1110.04 (13)
C18—C13—P2125.0 (4)C13—P2—Rh1114.65 (18)
C14—C13—P2118.1 (4)C25—P2—Rh1123.28 (16)
C13—C14—C15120.9 (6)P1—Rh1—P296.05 (3)
C13—C14—H14119.5P1—Rh1—P2i96.05 (3)
C15—C14—H14119.5P2—Rh1—P2i165.90 (5)
C16—C15—C14119.0 (6)P1—Rh1—Cl1172.92 (8)
C16—C15—H15120.5P2—Rh1—Cl184.45 (3)
C14—C15—H15120.5P2i—Rh1—Cl184.45 (3)
C17—C16—F3119.4 (6)C31—O1—H1O103 (5)
C17—C16—C15121.1 (5)O1—C31—H31A109.5
F3—C16—C15119.4 (6)O1—C31—H31B109.5
C16—C17—C18119.2 (6)H31A—C31—H31B109.5
C16—C17—H17120.4O1—C31—H31C109.5
C18—C17—H17120.4H31A—C31—H31C109.5
C17—C18—C13122.7 (6)H31B—C31—H31C109.5
C17—C18—H18118.7C8B—C7B—C12B120.0
C13—C18—H18118.7C8B—C7B—P1121.4 (11)
C20—C19—C24120.0C12B—C7B—P1117.7 (10)
C20—C19—P2120.9 (2)C7B—C8B—C9B120.0
C24—C19—P2119.0 (2)C7B—C8B—H8B120.0
C19—C20—C21120.0C9B—C8B—H8B120.0
C19—C20—H20120.0C10B—C9B—C8B120.0
C21—C20—H20120.0C10B—C9B—H9B120.0
C20—C21—C22120.0C8B—C9B—H9B120.0
C20—C21—H21120.0F2B—C10B—C11B118.7 (11)
C22—C21—H21120.0F2B—C10B—C9B121.2 (11)
F4—C22—C23120.2 (4)C11B—C10B—C9B120.0
F4—C22—C21119.8 (4)C10B—C11B—C12B120.0
C23—C22—C21120.0C10B—C11B—H11B120.0
C24—C23—C22120.0C12B—C11B—H11B120.0
C24—C23—H23120.0C11B—C12B—C7B120.0
C22—C23—H23120.0C11B—C12B—H12B120.0
C23—C24—C19120.0C7B—C12B—H12B120.0
C23—C24—H24120.0C21B—C20B—H20B119.0
C19—C24—H24120.0C20B—C21B—H21B120.7
C30—C25—C26116.1 (5)C24B—C23B—H23B120.2
C30—C25—P2119.9 (4)C23B—C24B—H24B120.1
C26—C25—P2124.0 (4)
C6—C1—C2—C32.8C8—C7—P1—C7i93.6 (12)
P1—C1—C2—C3−170.91 (16)C12—C7—P1—C7i−87.8 (10)
C1—C2—C3—C4−2.2C12—C7—P1—C7B7(9)
C2—C3—C4—F1−174.8 (7)C8—C7—P1—C7Bi104.1 (13)
C2—C3—C4—C50.8C12—C7—P1—C7Bi−77.3 (10)
F1—C4—C5—C6175.7 (7)C8—C7—P1—Rh1−137.7 (10)
C3—C4—C5—C60.0C12—C7—P1—Rh140.9 (11)
C4—C5—C6—C10.6C20—C19—P2—C13−27.6 (5)
C2—C1—C6—C5−2.0C24—C19—P2—C13154.7 (4)
P1—C1—C6—C5170.89 (19)C20—C19—P2—C2578.7 (5)
C12—C7—C8—C90.0C24—C19—P2—C25−99.1 (4)
P1—C7—C8—C9178.5 (18)C20—C19—P2—Rh1−150.6 (4)
C7—C8—C9—C100.0C24—C19—P2—Rh131.6 (4)
C8—C9—C10—F2175.7 (11)C18—C13—P2—C1958.3 (6)
C8—C9—C10—C110.0C14—C13—P2—C19−122.2 (4)
F2—C10—C11—C12−175.5 (11)C18—C13—P2—C25−44.9 (6)
C9—C10—C11—C120.0C14—C13—P2—C25134.5 (4)
C10—C11—C12—C70.0C18—C13—P2—Rh1178.3 (5)
C8—C7—C12—C110.0C14—C13—P2—Rh1−2.2 (5)
P1—C7—C12—C11−178.8 (15)C30—C25—P2—C1955.9 (5)
C18—C13—C14—C15−2.4 (9)C26—C25—P2—C19−123.3 (5)
P2—C13—C14—C15178.1 (5)C30—C25—P2—C13162.5 (5)
C13—C14—C15—C16−0.8 (10)C26—C25—P2—C13−16.7 (5)
C14—C15—C16—C173.1 (11)C30—C25—P2—Rh1−65.7 (5)
C14—C15—C16—F3−178.8 (6)C26—C25—P2—Rh1115.1 (4)
F3—C16—C17—C18179.8 (7)C1i—P1—Rh1—P286.36 (4)
C15—C16—C17—C18−2.1 (12)C1—P1—Rh1—P286.36 (4)
C16—C17—C18—C13−1.4 (13)C7—P1—Rh1—P2−152.1 (8)
C14—C13—C18—C173.5 (11)C7i—P1—Rh1—P2−35.2 (8)
P2—C13—C18—C17−177.0 (6)C7B—P1—Rh1—P2−145.9 (9)
C24—C19—C20—C210.0C7Bi—P1—Rh1—P2−41.3 (9)
P2—C19—C20—C21−177.8 (3)C1i—P1—Rh1—P2i−86.36 (4)
C19—C20—C21—C220.0C1—P1—Rh1—P2i−86.36 (4)
C20—C21—C22—F4−178.6 (5)C7—P1—Rh1—P2i35.2 (8)
C20—C21—C22—C230.0C7i—P1—Rh1—P2i152.1 (8)
F4—C22—C23—C24178.6 (5)C7B—P1—Rh1—P2i41.3 (9)
C21—C22—C23—C240.0C7Bi—P1—Rh1—P2i145.9 (9)
C22—C23—C24—C190.0C19—P2—Rh1—P1−134.29 (16)
C20—C19—C24—C230.0C13—P2—Rh1—P1109.30 (18)
P2—C19—C24—C23177.8 (3)C25—P2—Rh1—P1−17.8 (2)
C30—C25—C26—C27−1.7 (9)C19—P2—Rh1—P2i14.6 (4)
P2—C25—C26—C27177.5 (5)C13—P2—Rh1—P2i−101.8 (3)
C25—C26—C27—C280.4 (10)C25—P2—Rh1—P2i131.1 (3)
C26—C27—C28—C291.3 (10)C19—P2—Rh1—Cl152.81 (16)
C26—C27—C28—F5−178.5 (5)C13—P2—Rh1—Cl1−63.59 (18)
C27—C28—C29—C30−1.5 (10)C25—P2—Rh1—Cl1169.3 (2)
F5—C28—C29—C30178.3 (6)C1i—P1—C7B—C8B−21.7 (15)
C26—C25—C30—C291.5 (10)C1—P1—C7B—C8B−21.7 (15)
P2—C25—C30—C29−177.7 (6)C7—P1—C7B—C8B−2(9)
C28—C29—C30—C250.0 (11)C7i—P1—C7B—C8B83.8 (14)
C5—C4—F1—F1i−90.3 (7)C7Bi—P1—C7B—C8B94.3 (12)
C3—C4—F1—F1i85.4 (5)Rh1—P1—C7B—C8B−151.2 (10)
C5—C4—F1—C4i−90.3 (3)C1i—P1—C7B—C12B169.5 (8)
C3—C4—F1—C4i85.4 (4)C1—P1—C7B—C12B169.5 (8)
C2—C1—P1—C7−130.9 (10)C7—P1—C7B—C12B−171 (10)
C6—C1—P1—C755.8 (10)C7i—P1—C7B—C12B−84.9 (10)
C2—C1—P1—C7i130.4 (10)C7Bi—P1—C7B—C12B−74.4 (14)
C6—C1—P1—C7i−42.9 (10)Rh1—P1—C7B—C12B40.1 (13)
C2—C1—P1—C7B−127.4 (11)C12B—C7B—C8B—C9B0.0
C6—C1—P1—C7B59.3 (11)P1—C7B—C8B—C9B−168.4 (19)
C2—C1—P1—C7Bi126.9 (11)C7B—C8B—C9B—C10B0.0
C6—C1—P1—C7Bi−46.4 (11)C8B—C9B—C10B—F2B−176.0 (14)
C2—C1—P1—Rh1−0.2 (5)C8B—C9B—C10B—C11B0.0
C6—C1—P1—Rh1−173.6 (5)F2B—C10B—C11B—C12B176.1 (13)
C8—C7—P1—C1i−9.8 (14)C9B—C10B—C11B—C12B0.0
C12—C7—P1—C1i168.8 (7)C10B—C11B—C12B—C7B0.0
C8—C7—P1—C1−9.8 (14)C8B—C7B—C12B—C11B0.0
C12—C7—P1—C1168.8 (7)P1—C7B—C12B—C11B168.9 (19)

Symmetry codes: (i) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.952.513.458 (9)172
O1—H1O···Cl1iii1.03 (5)2.34 (5)3.369 (9)174 (11)

Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2075).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317.
  • Bennett, M. J. & Donaldson, P. B. (1977). Inorg. Chem.16, 655–660.
  • Bennett, M. A., Robertson, G. B., Turney, T. W. & Whimp, P. O. (1971). J. Chem. Soc. D, pp. 762–764.
  • Bruker (2003). SADABS. and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Evans, P. A., Incarvito, C. D. & Rheingold, A. L. (1999). Private communication (deposition number: 115178). CCDC, Cambridge, England.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208. [PubMed]
  • Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.
  • Jones, R. A., Real, F. M., Wilkinson, G., Galas, A. M. R., Hursthouse, M. B. & Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511–518.
  • Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226. [PubMed]
  • Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem.46, 8998–9002. [PubMed]
  • Lorenzini, F., Patrick, B. O. & James, B. R. (2007c). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.044.
  • Lorenzini, F., Patrick, B. O. & James, B. R. (2008a). Acta Cryst. E64, m179–m180. [PMC free article] [PubMed]
  • Lorenzini, F., Patrick, B. O. & James, B. R. (2008b). Acta Cryst. E64, m464–m465. [PMC free article] [PubMed]
  • Montelatici, S., van der Ent, A., Osborn, J. A. & Wilkinson, G. (1968). J. Chem. Soc. A, pp. 1054–1058.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Young, J. F., Osborn, J. A., Jardine, F. H. & Wilkinson, G. (1965). Chem. Commun. pp. 131–132.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography