PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m573.
Published online 2008 March 29. doi:  10.1107/S1600536808007368
PMCID: PMC2960909

Bis(4-methyl­piperidinium) hexa­chlorido­stannate(IV)

Abstract

The crystal structure of the title compound, (C6H14N)2[SnCl6], is built of 4-methyl­piperidinium cations, occupying special positions on the mirror plane, and hexa­chloridostannate(IV) anions on a special position of 2/m symmetry. The ions are linked via N—H(...)Cl hydrogen bonds into chains running along the b axis.

Related literature

For related literature, see: Shahzadi, Ali & Fettouhi (2006 [triangle]); Shahzadi, Ali, Bhatti et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m573-scheme1.jpg

Experimental

Crystal data

  • (C6H14N)2[SnCl6]
  • M r = 531.75
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m573-efi1.jpg
  • a = 13.123 (5) Å
  • b = 7.722 (5) Å
  • c = 10.500 (5) Å
  • V = 1064.0 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.95 mm−1
  • T = 100 (2) K
  • 0.25 × 0.25 × 0.25 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 7975 measured reflections
  • 1153 independent reflections
  • 1055 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.040
  • S = 1.04
  • 1153 reflections
  • 65 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.78 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007368/ya2069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007368/ya2069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support.

supplementary crystallographic information

Comment

We report here the crystal structure of the title compound (I) as shown in Fig. 1. The Sn1—Cl distances span the range of 2.417 (1)–2.431 (1) Å; the N1—C1 bond is 1.500 (2) Å. The N—H···Cl bonds link the ions into chains along the b axis (Table 1, Fig. 2).

Experimental

The 4-methyl-1-piperidine carbodithioic acid (3.0 g, 17.1 mmol) and tin tetrachloride pentahydrate (5.99 g, 17.1 mmol) were added to 100 ml of dry methanol in round bottom flask and stirred for 6 h. The resulting clear solution was evaporated at room temperature. Colourless crystals of the title compound were obtained after recrystallization in chlorofom and n-hexane (1:1). Yield: 64%. m.p. 228°C.

Refinement

H atoms bonded to C1—C3 were included in riding motion approximation in calculated positions with C—H distances of 0.99 Å and Uiso 1.2 times those of the parent atoms; those bonded to C4 and N1 were located in a difference Fourier map and refined isotropically with Uiso 1.2 times those of the parent atoms (C4 - H distances 0.93 (2) and 0.95 (3) Å and N1 - H 0.84 (3) and 0.88 (3) Å).

Figures

Fig. 1.
Structure of (I) with displacement ellipsoids drawn at the 50% probability level. The unlabelled atoms of the 4-methylpiperidinium cation are symmetry related (symmetry code x, y, -z). The unlabelled Cl atoms are symmetry related to Cl1 (symmetry code ...
Fig. 2.
Fragment of the crystal packing of (I) showing chain along the b axis, viewed approximately along the diagonal of the bc-plane; H-bonds are shown as dashed lines.

Crystal data

(C6H14N)2[SnCl6]F000 = 532
Mr = 531.75Dx = 1.660 Mg m3
Orthorhombic, PnnmMo Kα radiation λ = 0.71069 Å
Hall symbol: -P22nCell parameters from 3718 reflections
a = 13.123 (5) Åθ = 2.5–26.3º
b = 7.722 (5) ŵ = 1.95 mm1
c = 10.500 (5) ÅT = 100 (2) K
V = 1064.0 (9) Å3Pyramidal, colourless
Z = 20.25 × 0.25 × 0.25 mm

Data collection

Bruker APEX CCD area-detector diffractometer1055 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Monochromator: graphiteθmax = 26.3º
T = 100(2) Kθmin = 2.5º
[var phi] and ω scansh = −16→16
Absorption correction: nonek = −9→9
7975 measured reflectionsl = −13→13
1153 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040  w = 1/[σ2(Fo2) + (0.0164P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1153 reflectionsΔρmax = 0.78 e Å3
65 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.00001.00000.00000.01428 (9)
Cl10.18119 (5)0.94377 (8)0.00000.02127 (15)
Cl2−0.02412 (3)0.77582 (6)0.15973 (4)0.02279 (12)
N10.16716 (17)0.5226 (3)0.00000.0187 (5)
H1N0.128 (2)0.615 (4)0.00000.022*
H2N0.130 (2)0.434 (4)0.00000.022*
C10.23016 (14)0.5228 (2)0.11919 (17)0.0202 (4)
H1C0.18500.51710.19460.024*
H1D0.27010.63130.12420.024*
C20.30167 (13)0.3686 (2)0.11902 (17)0.0194 (4)
H2A0.26110.26070.12350.023*
H2B0.34560.37360.19560.023*
C30.36885 (19)0.3640 (3)0.00000.0194 (6)
H30.41300.46960.00000.023*
C40.4374 (2)0.2055 (4)0.00000.0271 (7)
H4A0.4780 (15)0.200 (3)−0.0726 (19)0.032*
H4B0.399 (2)0.102 (4)0.00000.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01250 (13)0.01126 (13)0.01907 (14)−0.00031 (9)0.0000.000
Cl10.0136 (3)0.0153 (3)0.0349 (4)0.0005 (2)0.0000.000
Cl20.0214 (2)0.0228 (2)0.0242 (3)−0.00568 (18)−0.00453 (18)0.00756 (19)
N10.0165 (11)0.0122 (12)0.0274 (13)0.0012 (9)0.0000.000
C10.0205 (10)0.0199 (10)0.0203 (10)−0.0007 (8)−0.0011 (7)−0.0040 (8)
C20.0189 (10)0.0200 (10)0.0192 (10)0.0010 (8)−0.0028 (8)−0.0011 (8)
C30.0151 (13)0.0189 (14)0.0241 (15)0.0003 (10)0.0000.000
C40.0239 (16)0.0321 (18)0.0252 (17)0.0102 (13)0.0000.000

Geometric parameters (Å, °)

Sn1—Cl12.4170 (11)C1—H1C0.9900
Sn1—Cl1i2.4170 (11)C1—H1D0.9900
Sn1—Cl2ii2.4310 (11)C2—C31.530 (2)
Sn1—Cl2iii2.4310 (11)C2—H2A0.9900
Sn1—Cl2i2.4310 (11)C2—H2B0.9900
Sn1—Cl22.4310 (11)C3—C41.519 (4)
N1—C1iii1.500 (2)C3—C2iii1.530 (2)
N1—C11.500 (2)C3—H31.0000
N1—H1N0.88 (3)C4—H4A0.931 (19)
N1—H2N0.84 (3)C4—H4B0.95 (3)
C1—C21.516 (2)
Cl1—Sn1—Cl1i180.000 (5)N1—C1—C2109.83 (15)
Cl1—Sn1—Cl2ii89.990 (19)N1—C1—H1C109.7
Cl1i—Sn1—Cl2ii90.010 (19)C2—C1—H1C109.7
Cl1—Sn1—Cl2iii90.010 (19)N1—C1—H1D109.7
Cl1i—Sn1—Cl2iii89.990 (19)C2—C1—H1D109.7
Cl2ii—Sn1—Cl2iii180.0H1C—C1—H1D108.2
Cl1—Sn1—Cl2i89.990 (19)C1—C2—C3112.08 (16)
Cl1i—Sn1—Cl2i90.010 (19)C1—C2—H2A109.2
Cl2ii—Sn1—Cl2i87.24 (5)C3—C2—H2A109.2
Cl2iii—Sn1—Cl2i92.76 (5)C1—C2—H2B109.2
Cl1—Sn1—Cl290.010 (19)C3—C2—H2B109.2
Cl1i—Sn1—Cl289.990 (19)H2A—C2—H2B107.9
Cl2ii—Sn1—Cl292.76 (5)C4—C3—C2iii111.10 (15)
Cl2iii—Sn1—Cl287.24 (5)C4—C3—C2111.10 (15)
Cl2i—Sn1—Cl2180.0C2iii—C3—C2109.6 (2)
C1iii—N1—C1113.1 (2)C4—C3—H3108.3
C1iii—N1—H1N108.7 (8)C2iii—C3—H3108.3
C1—N1—H1N108.7 (8)C2—C3—H3108.3
C1iii—N1—H2N108.6 (10)C3—C4—H4A112.1 (14)
C1—N1—H2N108.6 (10)C3—C4—H4B111.2 (18)
H1N—N1—H2N109 (3)H4A—C4—H4B105.6 (17)
C1iii—N1—C1—C2−56.8 (2)C1—C2—C3—C4−178.20 (18)
N1—C1—C2—C355.7 (2)C1—C2—C3—C2iii−55.1 (2)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x, −y+2, z; (iii) x, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl10.88 (3)2.63 (3)3.258 (3)129 (2)
N1—H2N···Cl2iv0.84 (3)2.72 (2)3.413 (2)141.6 (5)
N1—H2N···Cl2v0.84 (3)2.72 (2)3.413 (2)141.6 (5)

Symmetry codes: (iv) −x, −y+1, −z; (v) −x, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2069).

References

  • Bruker (2001). SMART
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem.691, 1797–1802.
  • Shahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178–m1180.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography