PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o730.
Published online 2008 March 20. doi:  10.1107/S1600536808007150
PMCID: PMC2960905

7-Nitro-5H-1-benzothio­pyrano[2,3-b]pyridin-5-one

Abstract

In the mol­ecule of the title compound, C12H6N2O3S, the central heterocyclic ring is oriented at dihedral angles of 3.25 (6) and 2.28 (7)° with respect to the benzene and pyridine rings, respectively. The dihedral angle between the benzene and pyridine rings is 5.53 (7)°. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains.

Related literature

For general background, see: Acheson et al. (1976 [triangle]); Lesher et al. (1962 [triangle]); Archer et al. (1982 [triangle], 1988 [triangle]); Showalter et al. (1988 [triangle]). For related structures, see: Atkinson et al. (2006 [triangle]). For related literature, see: Mann & Reid (1952 [triangle]); Hidetoshi (1997 [triangle]); Kurger & Mann (1955 [triangle]). For details of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o730-scheme1.jpg

Experimental

Crystal data

  • C12H6N2O3S
  • M r = 258.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o730-efi1.jpg
  • a = 24.822 (2) Å
  • b = 3.8884 (2) Å
  • c = 10.8505 (7) Å
  • V = 1047.28 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 296 (2) K
  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.927, T max = 0.976
  • 6571 measured reflections
  • 2491 independent reflections
  • 2038 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.083
  • S = 1.02
  • 2491 reflections
  • 163 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.21 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1047 Friedel pairs
  • Flack parameter: 0.03 (8)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007150/hk2433sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007150/hk2433Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer.

supplementary crystallographic information

Comment

Pyridine containing compounds are widely distributed in nature. Drugs, dyes, alkoloids (Acheson et al., 1976), nalidixic acid and quinoline (Lesher et al., 1962), which are antibacterial, also contain pyridine rings in their structures. Heteroaromatic antitumor compounds have been prepared in recent years with the hope of increasing pharmacological effects. DNA intercalating agents, which are an important class of antitumor drugs, usually posses planar aromatic and heteroaromatic polycyclic system. Some thioxanthones have also shown effectiveness against tumor (Archer et al., 1982; Archer et al., 1988; Showalter et al., 1988). Heterocyclic compounds having S-atom in their ring can also be used as antioxidative agents.

The title compound, (I), is a member of azathioxanthone. It contains three planar six-membered rings; A (C1—C6), B (S1/C1/C6—C8/C12) and C (N2/C8—C12), in which they are oriented at dihedral angles of A/B = 3.25 (6), A/C = 5.53 (7) and B/C = 2.28 (7) °. So, they are also nearly coplanar. The CCDC search (Allen, 2002) showed that the crystal structure containing a similar skeleton [2-methyl-1-azathioxanthone, (II), (Atkinson et al., 2006)], has been reported, thus it is the only potential candidate for comparison of the bond lengths and angles in (I).

In (I), the S—C bonds are in the range of [1.731 (2)–1.746 (2) Å], while they are between [1.741 (3)–1.743 (3) Å], in (II).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2). These H-bonds seem to play an effective role in the stabilization of the structure.

Experimental

A mixture of 2-chloronicotinic acid (1.57 g, 10 mmol) and thiophenol (2 ml) was heated under reflux for 2 h to produce 2-(phenylsulfanyl)pyridine-3- carboxylic acid (Mann & Reid, 1952). The polyphosphoric acid (PPA) (Hidetoshi, 1997) was used to cyclize the produced acid, and 5H-thiochromeno[2,3-b]pyridin- 5-one was obtained. The cyclized product was nitrated using KNO3 and H2SO4 (Kurger & Mann, 1955). Two isomers, 7-nitro-5H-thiochromeno[2,3-b]- pyridin-5-one, (I), and 9-nitro-5H-thiochromeno[2,3-b]pyridin-5-one, (III), were obtained, and they were separated using acetic acid and ethanol, respectively. Crystals suitable for X-ray diffraction were obtained by cooling the saturated solution of (I) in glacial acetic acid.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines

Crystal data

C12H6N2O3SF000 = 528
Mr = 258.25Dx = 1.638 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1444 reflections
a = 24.822 (2) Åθ = 1.7–29.2º
b = 3.8884 (2) ŵ = 0.31 mm1
c = 10.8505 (7) ÅT = 296 (2) K
V = 1047.28 (12) Å3Prismatic, light yellow
Z = 40.25 × 0.12 × 0.08 mm

Data collection

Bruker KappaAPEXII CCD diffractometer2491 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
Detector resolution: 7.5 pixels mm-1θmax = 29.1º
T = 296(2) Kθmin = 2.5º
ω scansh = −31→32
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −5→5
Tmin = 0.927, Tmax = 0.976l = −14→13
6571 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036  w = 1/[σ2(Fo2) + (0.0408P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.21 e Å3
2491 reflectionsΔρmin = −0.21 e Å3
163 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1047 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.39024 (2)0.42115 (12)0.39781 (5)0.03676 (14)
O10.12993 (7)0.2278 (5)0.3058 (2)0.0694 (6)
O20.15811 (8)−0.0812 (6)0.1535 (2)0.0660 (6)
O30.34609 (7)−0.1679 (5)0.06332 (15)0.0491 (5)
N10.16584 (8)0.1026 (5)0.2436 (2)0.0433 (5)
N20.48349 (8)0.3607 (5)0.3026 (2)0.0452 (5)
C10.32646 (8)0.3151 (5)0.34578 (19)0.0285 (4)
C20.28373 (9)0.4190 (5)0.4212 (2)0.0353 (5)
H20.29100.53380.49460.042*
C30.23123 (8)0.3542 (5)0.3888 (2)0.0354 (5)
H30.20290.42640.43840.042*
C40.22173 (9)0.1777 (5)0.2796 (2)0.0336 (5)
C50.26260 (9)0.0689 (5)0.2047 (2)0.0321 (5)
H50.2547−0.05170.13290.039*
C60.31604 (8)0.1380 (5)0.23549 (19)0.0282 (4)
C70.35825 (9)0.0152 (5)0.1503 (2)0.0314 (5)
C80.41454 (9)0.1140 (5)0.17226 (19)0.0313 (4)
C90.45386 (10)0.0293 (6)0.0858 (2)0.0440 (6)
H90.4444−0.08170.01300.053*
C100.50665 (11)0.1111 (6)0.1089 (3)0.0522 (7)
H100.53340.05780.05190.063*
C110.51950 (10)0.2730 (7)0.2176 (3)0.0528 (7)
H110.55550.32430.23260.063*
C120.43215 (9)0.2827 (5)0.27847 (19)0.0333 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0323 (3)0.0429 (3)0.0350 (3)−0.0032 (2)−0.0032 (3)−0.0060 (3)
O10.0317 (10)0.0938 (13)0.0825 (15)0.0109 (11)0.0082 (11)−0.0090 (13)
O20.0366 (11)0.0929 (15)0.0685 (14)−0.0117 (10)−0.0072 (11)−0.0173 (12)
O30.0395 (10)0.0618 (11)0.0458 (10)−0.0038 (8)0.0042 (8)−0.0236 (9)
N10.0265 (11)0.0552 (13)0.0481 (12)0.0024 (10)0.0022 (9)0.0093 (11)
N20.0309 (10)0.0479 (11)0.0569 (13)−0.0041 (9)−0.0028 (10)0.0007 (10)
C10.0267 (10)0.0267 (9)0.0322 (10)−0.0001 (8)−0.0014 (9)0.0027 (8)
C20.0412 (13)0.0361 (10)0.0285 (13)0.0011 (9)0.0020 (10)−0.0011 (9)
C30.0311 (10)0.0384 (10)0.0366 (12)0.0055 (8)0.0114 (10)0.0004 (12)
C40.0261 (11)0.0352 (10)0.0395 (12)0.0001 (9)−0.0012 (9)0.0088 (10)
C50.0308 (12)0.0350 (10)0.0305 (10)−0.0006 (9)−0.0009 (9)0.0020 (9)
C60.0282 (12)0.0273 (9)0.0290 (10)−0.0011 (8)−0.0007 (9)0.0035 (8)
C70.0307 (12)0.0349 (10)0.0285 (11)−0.0004 (9)0.0023 (10)0.0008 (9)
C80.0295 (11)0.0308 (10)0.0337 (11)0.0023 (9)0.0017 (10)0.0027 (9)
C90.0391 (14)0.0458 (12)0.0471 (14)0.0004 (11)0.0097 (11)0.0000 (11)
C100.0334 (15)0.0552 (15)0.0681 (18)−0.0003 (11)0.0193 (13)−0.0021 (14)
C110.0279 (13)0.0528 (14)0.078 (2)−0.0015 (11)0.0018 (14)0.0024 (15)
C120.0284 (12)0.0301 (10)0.0414 (12)−0.0003 (9)−0.0018 (10)0.0033 (9)

Geometric parameters (Å, °)

S1—C11.731 (2)C5—C61.394 (3)
S1—C121.746 (2)C5—H50.9300
N1—O11.219 (3)C7—O31.220 (3)
N1—O21.226 (3)C7—C81.469 (3)
N1—C41.471 (3)C7—C61.476 (3)
N2—C111.329 (3)C8—C91.393 (3)
C1—C21.400 (3)C9—C101.372 (4)
C1—C61.405 (3)C9—H90.9300
C2—C31.373 (3)C10—C111.374 (4)
C2—H20.9300C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C31.389 (3)C12—N21.336 (3)
C5—C41.367 (3)C12—C81.396 (3)
C1—S1—C12103.27 (10)C5—C6—C7117.57 (19)
O1—N1—O2124.0 (2)C1—C6—C7124.14 (18)
O1—N1—C4117.6 (2)O3—C7—C8120.90 (19)
O2—N1—C4118.4 (2)O3—C7—C6119.84 (19)
C11—N2—C12116.6 (2)C8—C7—C6119.27 (18)
C2—C1—C6120.01 (19)C9—C8—C12116.6 (2)
C2—C1—S1115.70 (16)C9—C8—C7119.7 (2)
C6—C1—S1124.28 (16)C12—C8—C7123.69 (19)
C3—C2—C1121.1 (2)C10—C9—C8119.4 (2)
C3—C2—H2119.5C10—C9—H9120.3
C1—C2—H2119.5C8—C9—H9120.3
C2—C3—C4118.1 (2)C9—C10—C11119.0 (2)
C2—C3—H3121.0C9—C10—H10120.5
C4—C3—H3121.0C11—C10—H10120.5
C5—C4—C3122.3 (2)N2—C11—C10123.8 (2)
C5—C4—N1118.7 (2)N2—C11—H11118.1
C3—C4—N1119.0 (2)C10—C11—H11118.1
C4—C5—C6120.3 (2)N2—C12—C8124.5 (2)
C4—C5—H5119.9N2—C12—S1110.68 (17)
C6—C5—H5119.9C8—C12—S1124.79 (17)
C5—C6—C1118.29 (19)
C12—S1—C1—C2−175.98 (15)C4—C5—C6—C11.2 (3)
C12—S1—C1—C63.75 (19)C4—C5—C6—C7−179.64 (18)
C1—S1—C12—N2177.32 (15)O3—C7—C6—C5−6.9 (3)
C1—S1—C12—C8−2.6 (2)C8—C7—C6—C5173.52 (18)
O1—N1—C4—C5−173.6 (2)O3—C7—C6—C1172.23 (19)
O2—N1—C4—C56.4 (3)C8—C7—C6—C1−7.3 (3)
O1—N1—C4—C36.8 (3)O3—C7—C8—C97.0 (3)
O2—N1—C4—C3−173.2 (2)C6—C7—C8—C9−173.5 (2)
C12—N2—C11—C100.2 (4)O3—C7—C8—C12−171.0 (2)
C6—C1—C2—C3−0.7 (3)C6—C7—C8—C128.6 (3)
S1—C1—C2—C3179.00 (16)C7—C8—C9—C10−177.6 (2)
S1—C1—C6—C5179.95 (15)C12—C8—C9—C100.5 (3)
C2—C1—C6—C5−0.3 (3)C8—C9—C10—C110.4 (4)
S1—C1—C6—C70.8 (3)C9—C10—C11—N2−0.8 (4)
C2—C1—C6—C7−179.47 (18)S1—C12—N2—C11−179.05 (18)
C1—C2—C3—C41.0 (3)C8—C12—N2—C110.8 (3)
C5—C4—C3—C2−0.1 (3)N2—C12—C8—C9−1.2 (3)
N1—C4—C3—C2179.43 (19)S1—C12—C8—C9178.70 (16)
C6—C5—C4—C3−1.0 (3)N2—C12—C8—C7176.82 (19)
C6—C5—C4—N1179.49 (18)S1—C12—C8—C7−3.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.413.275 (3)155

Symmetry codes: (i) −x+1/2, y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2433).

References

  • Acheson, M. (1976). An Introduction to the Chemistry of Heterocyclic Compounds, 3rd ed. New York: John Wiley & Sons Inc.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Archer, S., Miller, K. J., Rej, R., Periana, C. & Fricker, L. (1982). J. Med. Chem.25, 220–227. [PubMed]
  • Archer, S., Pica-Mattoccia, L., Cioli, D., Seyed-Mozaffari, A. & Zayed, A. H. (1988). J. Med. Chem.31, 254–260. [PubMed]
  • Atkinson, P., Findlay, K. S., Kielar, F., Pal, R., Parker, D., Poole, R. A., Puschmann, H., Richardson, S. L., Stenson, P. A., Thompson, A. L. & Yu, J. (2006). Org. Biomol. Chem.4, 1707–1722. [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hidetoshi, F. (1997). Heterocycles, 45, 119–127.
  • Kurger, S. & Mann, F. G. (1955). J. Chem. Soc. pp. 2755–2763.
  • Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem.5, 1063–1065. [PubMed]
  • Mann, F. G. & Reid, J. A. (1952). J. Chem. Soc. pp. 2057–2062.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Showalter, H. D. H., Angelo, M. M., Berman, E. M., Kanter, G. D., Ortwine, D. F., Ross-Kesten, S. G., Sercel, A. D., Turner, W. R., Werbel, L. M., Worth, D. F., Elslager, E. F., Leopold, W. R. & Shillis, J. L. (1988). J. Med. Chem.31, 1527–1539. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography