PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m551.
Published online 2008 March 14. doi:  10.1107/S1600536808006338
PMCID: PMC2960902

Poly[[μ2-aqua-aqua­(μ3-3,5-dinitro­salicylato)barium(II)] monohydrate]

Abstract

In the title coordination polymer, {[Ba(C7H2N2O7)(H2O)2]·H2O}n, the BaII atom is ten-coordinated by seven O atoms from four 3,5-dinitro­salicylatate ligands, two μ2-bridging aqua ligands and one water mol­ecule. The coordination mode is best described as a bicapped square-anti­prismatic geometry. The 3,5-dinitrosalicylatate ligands bridge three Ba atoms. Centrosymmetrically related dinuclear barium units, with a Ba(...)Ba separation of 4.767 (5) Å, form infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular O—H(...)O hydrogen-bonding inter­actions between O atoms of 3,5-dinitro­salicylatate ligands and water mol­ecules.

Related literature

For related literature, see: Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m551-scheme1.jpg

Experimental

Crystal data

  • [Ba(C7H2N2O7)(H2O)2]·H2O
  • M r = 417.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m551-efi1.jpg
  • a = 11.9649 (6) Å
  • b = 4.1866 (2) Å
  • c = 26.121 (1) Å
  • β = 109.332 (3)°
  • V = 1234.7 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.27 mm−1
  • T = 296 (2) K
  • 0.30 × 0.26 × 0.23 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.392, T max = 0.471
  • 8615 measured reflections
  • 2374 independent reflections
  • 2189 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.067
  • S = 1.05
  • 2374 reflections
  • 199 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.03 e Å−3
  • Δρmin = −1.30 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006338/im2052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006338/im2052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 3,5-dinitrosalicylatato complexes, it has been found that the 3,5-dinitrosalicylatato moiety functions as a multidentate ligand (Song et al., 2007) with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ba complex obtained by the reaction of 3,5-dinitrosalicylic acid and barium chloride in alkaline aqueous solution.

As illustrated in Figure 1, the BaII atom displays a bicapped square antiprismatic coordination environment, defined by seven O atoms from four 3,5-dinitrosalicylatato ligands, two µ2-bridging aqua ligands and one water molecule. The 3,5-dinitrosalicylatato ligands link barium ions to form infinite chains, which are further self-assembled into a supramolecular network through intermolecular O—H···O hydrogen bonding interactions (Table 1) involving the uncoordinating water molecules, coordinating water molecules as donors and O atoms of 3,5-dinitrosalicylatato ligands as acceptors (Fig. 2).

Experimental

A mixture of barium chloride (1 mmol), 3,5-dinitrosalicylic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The obtained crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O)

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Fig. 2.
A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Ba(C7H2N2O7)(H2O)2]·H2OF000 = 800
Mr = 417.49Dx = 2.246 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5837 reflections
a = 11.9649 (6) Åθ = 2.8–27.9º
b = 4.1866 (2) ŵ = 3.27 mm1
c = 26.121 (1) ÅT = 296 (2) K
β = 109.332 (3)ºBlock, yellow
V = 1234.7 (1) Å30.30 × 0.26 × 0.23 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer2374 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 296(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.392, Tmax = 0.472k = −4→4
8615 measured reflectionsl = −31→32

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067  w = 1/[σ2(Fo2) + (0.0339P)2 + 1.4739P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2374 reflectionsΔρmax = 1.03 e Å3
199 parametersΔρmin = −1.30 e Å3
9 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ba10.698106 (16)0.59849 (4)0.002749 (8)0.01250 (10)
O10.7177 (2)0.1028 (5)0.06998 (10)0.0150 (5)
O20.5320 (2)−0.3574 (6)0.05297 (11)0.0211 (6)
O30.4012 (2)−0.0694 (6)0.07602 (11)0.0190 (6)
O40.5934 (3)0.0066 (8)0.28282 (12)0.0311 (7)
O50.7491 (3)0.3054 (8)0.31157 (12)0.0359 (7)
O60.9954 (3)0.3764 (8)0.19294 (14)0.0416 (9)
O70.8915 (2)0.5460 (7)0.11347 (12)0.0251 (6)
N10.6755 (3)0.1544 (8)0.27501 (14)0.0245 (7)
N20.9007 (3)0.4015 (7)0.15565 (14)0.0205 (7)
C10.5067 (3)−0.1530 (8)0.08248 (14)0.0116 (7)
C20.6052 (3)−0.0051 (9)0.12815 (14)0.0129 (7)
C30.5950 (3)0.0128 (9)0.17862 (15)0.0167 (7)
H30.5270−0.06290.18440.020*
C40.6874 (3)0.1461 (9)0.22201 (15)0.0178 (8)
C50.7878 (3)0.2691 (9)0.21433 (15)0.0191 (8)
H50.84880.35520.24310.023*
C60.7951 (3)0.2603 (9)0.16271 (14)0.0158 (7)
C70.7074 (3)0.1200 (8)0.11687 (15)0.0146 (8)
O1W0.8608 (2)0.1295 (6)0.00092 (12)0.0205 (6)
H2W0.922 (2)0.101 (10)0.0272 (9)0.031*
H1W0.881 (3)0.137 (10)−0.0265 (9)0.031*
O2W0.7483 (2)0.6467 (6)−0.09980 (12)0.0223 (6)
H3W0.688 (2)0.758 (8)−0.1068 (17)0.033*
H4W0.732 (3)0.484 (6)−0.1189 (16)0.033*
O3W0.0565 (2)0.9715 (8)0.08622 (12)0.0255 (6)
H5W0.110 (3)1.093 (8)0.1033 (15)0.038*
H6W0.047 (4)0.837 (8)0.1074 (13)0.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ba10.01402 (13)0.01055 (14)0.01455 (15)−0.00009 (7)0.00690 (10)−0.00038 (8)
O10.0191 (13)0.0156 (14)0.0133 (13)−0.0010 (9)0.0091 (11)−0.0007 (10)
O20.0199 (13)0.0222 (15)0.0235 (15)−0.0031 (10)0.0105 (12)−0.0089 (11)
O30.0142 (12)0.0185 (15)0.0238 (15)0.0005 (10)0.0055 (11)−0.0015 (11)
O40.0331 (16)0.0413 (17)0.0244 (16)−0.0037 (14)0.0167 (13)0.0019 (15)
O50.0411 (18)0.0464 (19)0.0186 (16)−0.0102 (15)0.0077 (14)−0.0100 (15)
O60.0227 (16)0.066 (3)0.033 (2)−0.0138 (14)0.0056 (15)0.0021 (16)
O70.0248 (14)0.0226 (15)0.0300 (17)−0.0044 (11)0.0117 (12)0.0052 (13)
N10.0296 (18)0.0263 (18)0.0184 (18)0.0037 (14)0.0089 (15)−0.0003 (14)
N20.0151 (15)0.0223 (19)0.0230 (19)−0.0046 (12)0.0049 (14)−0.0040 (14)
C10.0132 (16)0.0130 (18)0.0082 (17)−0.0010 (13)0.0030 (14)0.0023 (13)
C20.0163 (16)0.0102 (17)0.0128 (18)0.0025 (14)0.0056 (14)0.0018 (14)
C30.0178 (17)0.0153 (18)0.0178 (19)0.0006 (15)0.0071 (15)0.0015 (16)
C40.0214 (18)0.021 (2)0.0116 (18)0.0022 (14)0.0060 (15)−0.0015 (15)
C50.0190 (17)0.018 (2)0.0166 (19)−0.0003 (15)0.0013 (15)−0.0030 (16)
C60.0129 (16)0.016 (2)0.0181 (19)−0.0012 (14)0.0042 (14)−0.0002 (15)
C70.0184 (18)0.0121 (19)0.0146 (19)0.0044 (13)0.0074 (15)0.0040 (13)
O1W0.0156 (13)0.0291 (16)0.0186 (15)0.0036 (10)0.0079 (11)0.0005 (12)
O2W0.0290 (15)0.0188 (15)0.0222 (15)0.0010 (11)0.0126 (13)−0.0019 (11)
O3W0.0206 (14)0.0334 (17)0.0235 (16)−0.0020 (12)0.0086 (12)0.0046 (13)

Geometric parameters (Å, °)

Ba1—O12.678 (2)O5—N11.237 (4)
Ba1—O1i2.706 (2)O6—N21.230 (5)
Ba1—O2i2.726 (3)O7—N21.230 (4)
Ba1—O1W2.777 (3)N1—C41.438 (5)
Ba1—O3ii2.813 (3)N2—C61.462 (4)
Ba1—O2iii2.840 (3)C1—C21.505 (5)
Ba1—O2W2.940 (3)C1—Ba1iii3.290 (3)
Ba1—O1Wi2.966 (3)C2—C31.366 (5)
Ba1—O3iii2.989 (3)C2—C71.447 (5)
Ba1—O73.056 (3)C3—C41.410 (5)
Ba1—C1iii3.290 (3)C3—H30.9300
Ba1—Ba1i4.18660 (19)C4—C51.382 (5)
Ba1—H3W2.90 (5)C5—C61.380 (5)
O1—C71.273 (4)C5—H50.9300
O1—Ba1iv2.706 (2)C6—C71.431 (5)
O2—C11.254 (4)O1W—Ba1iv2.966 (3)
O2—Ba1iv2.726 (3)O1W—H2W0.83 (4)
O2—Ba1iii2.840 (3)O1W—H1W0.83 (4)
O3—C11.266 (4)O2W—H3W0.83 (4)
O3—Ba1ii2.813 (3)O2W—H4W0.83 (4)
O3—Ba1iii2.989 (3)O3W—H5W0.82 (4)
O4—N11.233 (4)O3W—H6W0.83 (4)
O1—Ba1—O1i102.07 (8)O7—Ba1—Ba1i94.12 (5)
O1—Ba1—O2i69.92 (8)C1iii—Ba1—Ba1i124.53 (6)
O1i—Ba1—O2i63.59 (7)O1—Ba1—H3W142.3 (6)
O1—Ba1—O1W63.49 (7)O1i—Ba1—H3W115.3 (6)
O1i—Ba1—O1W130.70 (8)O2i—Ba1—H3W131.3 (3)
O2i—Ba1—O1W133.10 (8)O1W—Ba1—H3W86.9 (3)
O1—Ba1—O3ii161.23 (8)O3ii—Ba1—H3W41.2 (3)
O1i—Ba1—O3ii81.53 (7)O2iii—Ba1—H3W81.9 (7)
O2i—Ba1—O3ii96.08 (8)O2W—Ba1—H3W16.3 (6)
O1W—Ba1—O3ii127.72 (8)O1Wi—Ba1—H3W68.0 (7)
O1—Ba1—O2iii85.43 (8)O3iii—Ba1—H3W67.3 (7)
O1i—Ba1—O2iii118.10 (7)O7—Ba1—H3W136.2 (6)
O2i—Ba1—O2iii62.17 (9)C1iii—Ba1—H3W71.6 (7)
O1W—Ba1—O2iii107.83 (7)Ba1i—Ba1—H3W76.7 (6)
O3ii—Ba1—O2iii76.78 (8)C7—O1—Ba1124.9 (2)
O1—Ba1—O2W130.60 (7)C7—O1—Ba1iv130.8 (2)
O1i—Ba1—O2W122.52 (7)Ba1—O1—Ba1iv102.07 (8)
O2i—Ba1—O2W146.64 (8)C1—O2—Ba1iv134.8 (2)
O1W—Ba1—O2W71.15 (8)C1—O2—Ba1iii99.6 (2)
O3ii—Ba1—O2W56.60 (7)Ba1iv—O2—Ba1iii117.83 (9)
O2iii—Ba1—O2W90.76 (8)C1—O3—Ba1ii116.9 (2)
O1—Ba1—O1Wi132.52 (7)C1—O3—Ba1iii92.2 (2)
O1i—Ba1—O1Wi60.61 (7)Ba1ii—O3—Ba1iii92.33 (8)
O2i—Ba1—O1Wi122.95 (7)N2—O7—Ba1134.3 (2)
O1W—Ba1—O1Wi93.55 (7)O4—N1—O5122.1 (3)
O3ii—Ba1—O1Wi65.38 (7)O4—N1—C4119.0 (3)
O2iii—Ba1—O1Wi142.04 (8)O5—N1—C4118.9 (3)
O2W—Ba1—O1Wi66.46 (8)O7—N2—O6122.5 (3)
O1—Ba1—O3iii78.80 (7)O7—N2—C6119.2 (3)
O1i—Ba1—O3iii162.60 (7)O6—N2—C6118.3 (3)
O2i—Ba1—O3iii101.22 (7)O2—C1—O3122.7 (3)
O1W—Ba1—O3iii65.50 (7)O2—C1—C2118.9 (3)
O3ii—Ba1—O3iii92.33 (8)O3—C1—C2118.5 (3)
O2iii—Ba1—O3iii44.50 (7)O2—C1—Ba1iii58.32 (18)
O2W—Ba1—O3iii65.05 (7)O3—C1—Ba1iii65.18 (18)
O1Wi—Ba1—O3iii131.14 (7)C2—C1—Ba1iii169.1 (2)
O1—Ba1—O756.58 (7)C3—C2—C7121.9 (3)
O1i—Ba1—O764.28 (8)C3—C2—C1119.4 (3)
O2i—Ba1—O789.64 (8)C7—C2—C1118.7 (3)
O1W—Ba1—O769.50 (8)C2—C3—C4120.0 (3)
O3ii—Ba1—O7138.31 (7)C2—C3—H3120.0
O2iii—Ba1—O7139.60 (8)C4—C3—H3120.0
O2W—Ba1—O7123.25 (7)C5—C4—C3121.3 (3)
O1Wi—Ba1—O776.92 (7)C5—C4—N1119.9 (3)
O3iii—Ba1—O7127.03 (7)C3—C4—N1118.8 (3)
O1—Ba1—C1iii83.60 (8)C6—C5—C4118.1 (3)
O1i—Ba1—C1iii140.04 (8)C6—C5—H5121.0
O2i—Ba1—C1iii82.29 (8)C4—C5—H5121.0
O1W—Ba1—C1iii87.53 (8)C5—C6—C7124.2 (3)
O3ii—Ba1—C1iii82.12 (8)C5—C6—N2116.7 (3)
O2iii—Ba1—C1iii22.07 (8)C7—C6—N2119.1 (3)
O2W—Ba1—C1iii75.72 (8)O1—C7—C6123.4 (3)
O1Wi—Ba1—C1iii139.44 (8)O1—C7—C2122.2 (3)
O3iii—Ba1—C1iii22.61 (8)C6—C7—C2114.4 (3)
O7—Ba1—C1iii139.53 (8)Ba1—O1W—Ba1iv93.55 (7)
O1—Ba1—Ba1i140.79 (5)Ba1—O1W—H2W121 (3)
O1i—Ba1—Ba1i38.72 (5)Ba1iv—O1W—H2W107 (3)
O2i—Ba1—Ba1i86.11 (5)Ba1—O1W—H1W113 (3)
O1W—Ba1—Ba1i135.00 (5)Ba1iv—O1W—H1W115 (3)
O3ii—Ba1—Ba1i45.50 (5)H2W—O1W—H1W106.4 (17)
O2iii—Ba1—Ba1i110.82 (5)Ba1—O2W—H3W79 (3)
O2W—Ba1—Ba1i86.06 (5)Ba1—O2W—H4W114 (4)
O1Wi—Ba1—Ba1i41.45 (5)H3W—O2W—H4W108 (4)
O3iii—Ba1—Ba1i137.83 (5)H5W—O3W—H6W108 (4)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z; (iv) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H6W···O7v0.82 (3)2.27 (3)2.916 (4)135 (4)
O3W—H5W···O5vi0.82 (4)2.60 (4)2.985 (4)110 (3)
O3W—H5W···O2Wvii0.82 (4)2.04 (3)2.755 (4)145 (4)
O2W—H4W···N1viii0.83 (3)2.69 (4)3.340 (4)137 (4)
O2W—H4W···O4viii0.83 (3)2.55 (4)3.080 (4)123 (3)
O2W—H4W···O5viii0.83 (3)2.25 (3)2.993 (4)150 (5)
O2W—H3W···O3ii0.83 (3)2.01 (2)2.730 (4)145 (4)
O1W—H1W···O3Wii0.83 (3)1.991 (16)2.798 (4)164 (4)
O1W—H2W···O3Wix0.83 (3)1.90 (3)2.725 (4)171 (4)

Symmetry codes: (v) x−1, y, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, −y+2, −z; (viii) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z; (ix) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2052).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography