PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): m511.
Published online 2008 March 5. doi:  10.1107/S1600536808005382
PMCID: PMC2960900

Bis(2,6-dimethyl­pyrazine-κN 4)diiodidozinc(II)

Abstract

In the title compound, [ZnI2(C6H8N2)2], the ZnII ion is coordinated by two iodide anions and two N atoms from 2,6-dimethyl­pyrazine in a distorted tetra­hedral geometry.

Related literature

For background information, see: Batten & Robson (1998 [triangle]); Chi et al. (2006 [triangle]); Evans & Lin (2002 [triangle]); Hong et al. (2004 [triangle]); Janiak (2003 [triangle]); Janaik & Scharmann (2003 [triangle]); Kasai et al. (2000 [triangle]); Kitagawa et al. (2004 [triangle]); Luan et al. (2005 [triangle], 2006 [triangle]); Moler et al. (2001 [triangle]); Moulton & Zaworotko (2001 [triangle]); Ryu et al. (2005 [triangle]); Wang et al. (2006 [triangle]); Blake et al. (1999 [triangle]); Saalfrank et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m511-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C6H8N2)2]
  • M r = 535.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m511-efi1.jpg
  • a = 9.1825 (7) Å
  • b = 13.8144 (10) Å
  • c = 13.6242 (10) Å
  • β = 98.381 (1)°
  • V = 1709.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.04 mm−1
  • T = 170 (2) K
  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 9413 measured reflections
  • 3344 independent reflections
  • 2518 reflections with I > 2σ(I)
  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.069
  • S = 0.81
  • 3344 reflections
  • 176 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −1.27 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005382/dn2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005382/dn2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment and the Seoul R & BD Program is gratefully acknowledged.

supplementary crystallographic information

Comment

Much interest has recently been focused on the rational design and construction of novel discrete and polymeric metal-organic complexes, not only due to their structural and topological novelty (Batten & Robson, 1998, Moler et al., 2001, Moulton & Zaworotko, 2001), but also for their potential applications as functional materials such as catalysis, molecular recognition, separation, and nonlinear optics (Hong et al., 2004, Evans & Lin, 2002, Kasai et al. 2000, Kitagawa et al., 2004). It has shown that many factors such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Ryu et al., 2005), the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Blake et al., 1999, Saalfrank et al., 2001) influence highly on the structure of metal-organic complexes. In addition, it has been considered that the secondary forces such as hydrogen-bonding, pi-pi stacking, and host–guest interactions are of importance as well (Luan et al., 2005, Janaik & Scharmann, 2003, Janiak, 2003). For obtaining novel structural motifs with predictable properties, therefore, a large number of organic ligands were designed and utilized. Among them, 2,6-dimethylpyrazine was often selected. We have also reacted ZnI2 with 2,6-dimethylpyrazine to form a new zinc complex and report here on the crystal structure of diiodobis(2,6-dimethylpyrazine)zinc(II).

Asymmetric unit contains a whole molecule (Fig. 1). ZnII ion is coordinated by two iodide anions and two nitrogen atoms from 2,6-dimethylpyrazine to form a distorted tetrahedral geometry (Fig. 1). Zn—I bond distances are 2.5393 (7) and 2.5442 (6) Å, and I—Zn—I and N—Zn—N bond angles are 122.78 (2) and 101.39 (14)°, respectively.

Experimental

244.29 mg (0.75 mmol) of ZnI2 were dissolved in 4 ml water and carefully layered by 4 ml e thanol solution of 2,6-dimethylpyrazine ligand (165.52 mg, 1.5 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

(type here to add refinement details)

Figures

Fig. 1.
The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[ZnI2(C6H8N2)2]F(000) = 1008
Mr = 535.48Dx = 2.080 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2888 reflections
a = 9.1825 (7) Åθ = 2.7–25.6°
b = 13.8144 (10) ŵ = 5.04 mm1
c = 13.6242 (10) ÅT = 170 K
β = 98.381 (1)°Rod, colorless
V = 1709.8 (2) Å30.10 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.109
graphiteθmax = 26.0°, θmin = 2.1°
[var phi] and ω scansh = −11→11
9413 measured reflectionsk = −17→16
3344 independent reflectionsl = −9→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.81w = 1/[σ2(Fo2) + (0.0147P)2] where P = (Fo2 + 2Fc2)/3
3344 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −1.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.07870 (6)0.24556 (4)0.76694 (4)0.02508 (15)
I10.07868 (4)0.15009 (3)0.60725 (2)0.03357 (11)
I20.19801 (4)0.41101 (3)0.79495 (2)0.03516 (11)
N11−0.1362 (4)0.2579 (3)0.7987 (3)0.0244 (9)
N12−0.4102 (4)0.2602 (3)0.8610 (3)0.0290 (10)
N210.1716 (4)0.1540 (3)0.8789 (3)0.0247 (9)
N220.3046 (4)0.0275 (3)1.0237 (3)0.0283 (10)
C11−0.2359 (5)0.1893 (4)0.7695 (3)0.0262 (11)
H11−0.21150.13870.72760.031*
C12−0.3750 (5)0.1903 (4)0.7992 (3)0.0274 (11)
C13−0.3120 (5)0.3282 (4)0.8896 (3)0.0280 (12)
C14−0.1739 (5)0.3274 (4)0.8575 (3)0.0278 (11)
H14−0.10580.37780.87810.033*
C15−0.4843 (5)0.1130 (4)0.7682 (4)0.0361 (13)
H15A−0.50430.07680.82670.054*
H15B−0.44500.06880.72220.054*
H15C−0.57580.14220.73510.054*
C16−0.3539 (5)0.4070 (4)0.9555 (4)0.0438 (15)
H16A−0.45660.42580.93400.066*
H16B−0.28980.46310.95150.066*
H16C−0.34290.38371.02410.066*
C210.1310 (5)0.0616 (4)0.8802 (3)0.0278 (12)
H210.05660.03850.82990.033*
C220.1950 (5)−0.0025 (4)0.9535 (3)0.0302 (12)
C230.3442 (5)0.1193 (4)1.0219 (3)0.0277 (12)
C240.2793 (5)0.1839 (4)0.9502 (3)0.0265 (11)
H240.31120.24940.95150.032*
C250.1460 (6)−0.1051 (4)0.9560 (4)0.0391 (14)
H25A0.1946−0.14360.90980.059*
H25B0.0390−0.10850.93660.059*
H25C0.1720−0.13081.02340.059*
C260.4667 (6)0.1544 (4)1.1002 (3)0.0406 (14)
H26A0.42610.17141.16060.061*
H26B0.51330.21151.07560.061*
H26C0.54010.10301.11520.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0246 (3)0.0250 (3)0.0258 (3)0.0006 (2)0.0044 (2)0.0019 (3)
I10.0398 (2)0.0359 (2)0.02578 (18)0.00179 (16)0.00728 (14)−0.00169 (16)
I20.0342 (2)0.0259 (2)0.0448 (2)−0.00311 (15)0.00379 (16)0.00327 (16)
N110.023 (2)0.027 (2)0.023 (2)0.0031 (18)0.0014 (17)0.0060 (19)
N120.028 (2)0.034 (3)0.026 (2)0.005 (2)0.0062 (18)0.001 (2)
N210.025 (2)0.027 (3)0.0217 (19)−0.0010 (18)0.0039 (16)0.0008 (19)
N220.028 (2)0.030 (3)0.026 (2)0.002 (2)0.0014 (18)0.000 (2)
C110.022 (3)0.028 (3)0.027 (2)0.004 (2)−0.001 (2)−0.002 (2)
C120.023 (3)0.029 (3)0.028 (3)0.003 (2)0.000 (2)0.007 (2)
C130.029 (3)0.030 (3)0.025 (3)0.004 (2)0.004 (2)0.003 (2)
C140.028 (3)0.026 (3)0.028 (3)0.001 (2)0.000 (2)0.000 (2)
C150.024 (3)0.038 (3)0.045 (3)−0.006 (3)0.003 (2)−0.008 (3)
C160.032 (3)0.049 (4)0.051 (3)0.001 (3)0.009 (3)−0.011 (3)
C210.029 (3)0.028 (3)0.026 (3)−0.003 (2)0.004 (2)−0.004 (2)
C220.032 (3)0.029 (3)0.030 (3)0.000 (2)0.008 (2)−0.001 (2)
C230.030 (3)0.032 (3)0.021 (2)−0.003 (2)0.004 (2)−0.004 (2)
C240.023 (2)0.029 (3)0.029 (3)−0.001 (2)0.008 (2)−0.002 (2)
C250.050 (3)0.030 (3)0.034 (3)−0.002 (3)−0.003 (3)0.007 (3)
C260.041 (3)0.045 (4)0.033 (3)−0.008 (3)−0.006 (2)0.002 (3)

Geometric parameters (Å, °)

Zn1—N212.068 (4)C15—H15A0.9800
Zn1—N112.088 (4)C15—H15B0.9800
Zn1—I22.5393 (7)C15—H15C0.9800
Zn1—I12.5442 (6)C16—H16A0.9800
N11—C141.328 (6)C16—H16B0.9800
N11—C111.337 (6)C16—H16C0.9800
N12—C131.321 (6)C21—C221.398 (7)
N12—C121.351 (6)C21—H210.9500
N21—C211.331 (6)C22—C251.489 (7)
N21—C241.346 (5)C23—C241.392 (6)
N22—C231.321 (6)C23—C261.513 (6)
N22—C221.348 (6)C24—H240.9500
C11—C121.395 (7)C25—H25A0.9800
C11—H110.9500C25—H25B0.9800
C12—C151.485 (7)C25—H25C0.9800
C13—C141.401 (7)C26—H26A0.9800
C13—C161.496 (7)C26—H26B0.9800
C14—H140.9500C26—H26C0.9800
N21—Zn1—N11101.39 (14)H15B—C15—H15C109.5
N21—Zn1—I2108.49 (11)C13—C16—H16A109.5
N11—Zn1—I2107.19 (12)C13—C16—H16B109.5
N21—Zn1—I1105.22 (11)H16A—C16—H16B109.5
N11—Zn1—I1109.72 (10)C13—C16—H16C109.5
I2—Zn1—I1122.78 (2)H16A—C16—H16C109.5
C14—N11—C11117.7 (4)H16B—C16—H16C109.5
C14—N11—Zn1121.4 (3)N21—C21—C22121.8 (4)
C11—N11—Zn1120.5 (3)N21—C21—H21119.1
C13—N12—C12118.6 (4)C22—C21—H21119.1
C21—N21—C24117.6 (4)N22—C22—C21120.3 (5)
C21—N21—Zn1120.7 (3)N22—C22—C25118.2 (4)
C24—N21—Zn1121.7 (3)C21—C22—C25121.5 (5)
C23—N22—C22117.5 (4)N22—C23—C24122.5 (4)
N11—C11—C12121.5 (5)N22—C23—C26118.2 (4)
N11—C11—H11119.2C24—C23—C26119.2 (5)
C12—C11—H11119.2N21—C24—C23120.3 (5)
N12—C12—C11120.0 (5)N21—C24—H24119.9
N12—C12—C15118.6 (4)C23—C24—H24119.9
C11—C12—C15121.3 (5)C22—C25—H25A109.5
N12—C13—C14120.8 (5)C22—C25—H25B109.5
N12—C13—C16118.1 (4)H25A—C25—H25B109.5
C14—C13—C16121.1 (5)C22—C25—H25C109.5
N11—C14—C13121.4 (5)H25A—C25—H25C109.5
N11—C14—H14119.3H25B—C25—H25C109.5
C13—C14—H14119.3C23—C26—H26A109.5
C12—C15—H15A109.5C23—C26—H26B109.5
C12—C15—H15B109.5H26A—C26—H26B109.5
H15A—C15—H15B109.5C23—C26—H26C109.5
C12—C15—H15C109.5H26A—C26—H26C109.5
H15A—C15—H15C109.5H26B—C26—H26C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2320).

References

  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem.45, 10605–10612. [PubMed]
  • Evans, O. R. & Lin, W. (2002). Acc. Chem. Res.35, 511–522. [PubMed]
  • Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701. [PubMed]
  • Janaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123–1133.
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Kasai, K., Aoyagi, M. & Fujita, M. (2000). J. Am. Chem. Soc.122, 2140–2141.
  • Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [PubMed]
  • Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed.44, 3864–3867. [PubMed]
  • Moler, D. B., Chen, H., Li, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Ryu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659–3670.
  • Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J.7, 2765–2769. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc.128, 674–675. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography