PMCCPMCCPMCC

Conseils de recherche
Les critères de recherche 

Avancée

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o661–o662.
Published online 2008 March 5. doi:  10.1107/S1600536808005527
PMCID: PMC2960895

tert-Butyl 5-(4-methoxy­phen­yl)-1-methyl-2-oxopyrrolidin-3-yl carbonate

Abstract

In the title compound, C17H23NO5, the pyrrolidinone ring is in an envelope conformation. The tert-butyl carbonate and 4-methoxy­phenyl groups are arranged on the same side of the pyrrolidinone ring. The meth­oxy group is coplanar with the attached benzene ring. The mol­ecules are linked into chains along the b axis via C—H(...)O hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the biological properties of pyrrolidine alkaloids, see: Iida et al. (1986 [triangle]); Matkhalikova et al. (1969 [triangle]); Reddy & Rao (2006 [triangle]); Royles (1996 [triangle]). For syntheses of compounds containing a tetra­mic acid ring, see: Chandrasekhar et al. (2005 [triangle], 2006 [triangle]); Gurjar et al. (2006 [triangle]); Yoda et al. (1996 [triangle]). For a related structure, see: Mohammat et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o661-scheme1.jpg

Experimental

Crystal data

  • C17H23NO5
  • M r = 321.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o661-efi1.jpg
  • a = 23.9157 (4) Å
  • b = 6.2788 (1) Å
  • c = 24.1224 (4) Å
  • β = 101.971 (1)°
  • V = 3543.49 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100.0 (1) K
  • 0.49 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.958, T max = 0.986
  • 21759 measured reflections
  • 5155 independent reflections
  • 3632 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.125
  • S = 1.09
  • 5155 reflections
  • 213 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005527/ci2562sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005527/ci2562Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the generous support of Universiti Teknologi MARA and Universiti Sains Malaysia, and the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

Chiral polyhydroxy alkaloids show remarkable biological properties. Among these, pyrrolidine alkaloids carrying an aromatic substituent on the ring are of a rare class found in nature (Reddy & Rao, 2006). The title compound, C17H23NO5, can act as an essential intermediate in the synthesis of such a hydroxyl alkaloid unit (Chandrasekhar et al., 2005; 2006; Gurjar et al., 2006; Yoda et al., 1996), which eventually can be used as a template in multi-step syntheses of natural products such as codonopsinine isolated from Codonopsis clematidae. Codonopsinine exhibits antibiotic and hypotensive activities without affecting the central nervous system (Matkhalikova et al., 1969). We have synthesized the title compound and its structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The pyrrolidinone ring adopts an envelope conformation, with atom C3 displaced from the C1/C2/C4/N1 plane by 0.310 (2) Å; the puckering parameters (Cremer & Pople, 1975) are Q = 0.194 (1) Å and [var phi] = 111.1 (4)°. The methoxy group is coplanar with the benzene ring as indicated by the torsion angle C17–O5–C8–C7 of -2.06 (19)°. In the tert-butylcarbonate moiety, atoms C12, C13, C14, O2, O3 and O4 lie on the same plane, with O4 deviating by a maximum of 0.019 (1) Å. All bond lengths and angles show normal values (Allen et al., 1987) and are comparable with those observed in a related structure (Mohammat et al., 2008).

Weak C—H···O intramolecular interactions are observed in the molecular structure. In the crystal packing (Fig. 2), the molecules are linked into chains along the b axis via C2—H2···O1i, C4—H4···O1ii and C17—H17A···O3iii hydrogen bonds (Table 1).

Experimental

Equimolar amount of diethyloxalacetate sodium salt (20.00 g, 95.2 mmol), anisaldehyde (11.60 ml, 95.2 mmol) and methylamine (11.74 ml, 95.2 mmol) in ethanol (200 ml) was refluxed to obtain an α,β-diketo ester (7.78 g, 28%). Diethoxycarbonylation of this α,β-diketo ester (2.62 g, 8.94 mmol) was then successfully carried out by refluxing in 10% HCl solution to give a basic pyrrolidinone ring skeleton (0.86 g, 44%). Reduction of this diketone (0.32 g, 1.46 mmol) was carried out in sodium borohydride/methanol at 273 K to give the hydroxy keto amide (0.29 g, 92%). Protection of the hydroxyl group (0.29 g, 1.3 mmol) was successfully carried out using tert-butoxycarbonyl (Boc2O), and 4-dimethylaminopyridine (DMAP) in tetrahydrofuran (THF) via stirring at room temperature for 24 h to obtain the title compound in 76% yield (0.31 g). Colourless block-shaped single crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethyl acetate-petroleum ether (1:1 v/v) solution after several days.

Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) and 1.00 Å (CH), and with Uiso = 1.5Ueq(C) for CH3 atoms and 1.2Ueq(C) for other H atoms. A rotating group model was used for methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of the title compound, viewed approximately along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H23NO5F000 = 1376
Mr = 321.36Dx = 1.205 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5155 reflections
a = 23.9157 (4) Åθ = 1.7–30.0º
b = 6.2788 (1) ŵ = 0.09 mm1
c = 24.1224 (4) ÅT = 100.0 (1) K
β = 101.971 (1)ºBlock, colourless
V = 3543.49 (10) Å30.49 × 0.18 × 0.16 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5155 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 1.7º
ω scansh = −33→33
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −8→8
Tmin = 0.958, Tmax = 0.986l = −33→33
21759 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125  w = 1/[σ2(Fo2) + (0.0546P)2 + 0.7489P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5155 reflectionsΔρmax = 0.30 e Å3
213 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.74746 (4)1.13213 (14)0.78815 (4)0.0273 (2)
O20.62826 (4)1.08149 (14)0.74372 (3)0.0269 (2)
O30.58372 (4)0.94891 (18)0.65973 (4)0.0389 (3)
O40.55809 (4)1.25800 (16)0.69566 (4)0.0339 (2)
O50.63462 (4)0.40108 (16)1.02990 (4)0.0344 (2)
N10.73427 (4)0.81417 (16)0.83037 (4)0.0214 (2)
C10.72075 (5)0.9674 (2)0.79119 (5)0.0210 (2)
C20.66622 (5)0.90078 (19)0.75060 (5)0.0215 (2)
H20.67470.85860.71320.026*
C30.64411 (5)0.7111 (2)0.77840 (5)0.0264 (3)
H3A0.63000.59910.75010.032*
H3B0.61250.75410.79680.032*
C40.69576 (5)0.6296 (2)0.82289 (5)0.0212 (2)
H40.71420.50770.80680.025*
C50.68121 (5)0.56408 (19)0.87850 (5)0.0207 (2)
C60.69206 (5)0.3607 (2)0.89980 (5)0.0237 (3)
H60.70950.26050.87920.028*
C70.67799 (5)0.2985 (2)0.95081 (5)0.0261 (3)
H70.68610.15830.96490.031*
C80.65208 (5)0.4434 (2)0.98043 (5)0.0260 (3)
C90.64158 (6)0.6501 (2)0.96005 (5)0.0301 (3)
H90.62430.75050.98070.036*
C100.65630 (5)0.7092 (2)0.90992 (5)0.0273 (3)
H100.64940.85100.89650.033*
C110.78953 (5)0.8054 (2)0.86899 (6)0.0310 (3)
H11A0.81140.93390.86440.046*
H11B0.81050.67950.86050.046*
H11C0.78400.79700.90810.046*
C120.58881 (5)1.0836 (2)0.69533 (5)0.0235 (3)
C130.50992 (5)1.3048 (2)0.64753 (6)0.0335 (3)
C140.48639 (8)1.5091 (3)0.66671 (10)0.0726 (7)
H14A0.47321.48350.70200.109*
H14B0.45431.55850.63740.109*
H14C0.51641.61790.67320.109*
C150.53223 (8)1.3349 (4)0.59443 (9)0.0818 (8)
H15A0.54621.19850.58300.123*
H15B0.56361.43830.60140.123*
H15C0.50151.38780.56420.123*
C160.46593 (6)1.1316 (3)0.64296 (8)0.0547 (5)
H16A0.45711.10580.68030.082*
H16B0.48081.00080.62930.082*
H16C0.43111.17530.61630.082*
C170.64211 (8)0.1904 (3)1.05145 (7)0.0444 (4)
H17A0.62830.18161.08690.067*
H17B0.68280.15301.05860.067*
H17C0.62040.09131.02370.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0283 (5)0.0219 (5)0.0342 (5)−0.0031 (4)0.0121 (4)0.0018 (4)
O20.0266 (4)0.0269 (5)0.0260 (4)0.0102 (4)0.0026 (3)−0.0026 (4)
O30.0367 (5)0.0479 (7)0.0282 (5)0.0156 (5)−0.0021 (4)−0.0096 (5)
O40.0270 (5)0.0296 (5)0.0414 (5)0.0104 (4)−0.0019 (4)−0.0008 (4)
O50.0511 (6)0.0321 (6)0.0239 (4)−0.0066 (5)0.0167 (4)−0.0021 (4)
N10.0198 (5)0.0218 (5)0.0217 (5)−0.0030 (4)0.0023 (4)0.0007 (4)
C10.0222 (5)0.0204 (6)0.0224 (6)0.0020 (5)0.0098 (4)−0.0017 (5)
C20.0228 (6)0.0201 (6)0.0216 (5)0.0064 (5)0.0046 (4)−0.0001 (5)
C30.0241 (6)0.0279 (7)0.0248 (6)−0.0042 (5)−0.0002 (5)0.0015 (5)
C40.0234 (6)0.0180 (6)0.0222 (6)−0.0025 (5)0.0050 (4)−0.0011 (5)
C50.0202 (5)0.0207 (6)0.0210 (5)−0.0027 (5)0.0037 (4)−0.0009 (5)
C60.0260 (6)0.0212 (6)0.0250 (6)0.0007 (5)0.0075 (5)−0.0001 (5)
C70.0316 (6)0.0206 (6)0.0262 (6)−0.0006 (5)0.0064 (5)0.0019 (5)
C80.0294 (6)0.0281 (7)0.0209 (6)−0.0071 (5)0.0060 (5)−0.0031 (5)
C90.0389 (7)0.0252 (7)0.0287 (6)−0.0007 (6)0.0128 (5)−0.0065 (6)
C100.0347 (7)0.0208 (6)0.0272 (6)0.0004 (5)0.0083 (5)−0.0003 (5)
C110.0228 (6)0.0358 (8)0.0312 (7)−0.0027 (6)−0.0014 (5)0.0025 (6)
C120.0206 (5)0.0274 (7)0.0240 (6)0.0037 (5)0.0083 (5)0.0038 (5)
C130.0204 (6)0.0369 (8)0.0409 (8)0.0074 (6)0.0011 (5)0.0119 (6)
C140.0545 (11)0.0502 (12)0.0977 (16)0.0303 (10)−0.0199 (11)−0.0041 (11)
C150.0520 (10)0.134 (2)0.0651 (12)0.0401 (13)0.0254 (9)0.0665 (14)
C160.0263 (7)0.0538 (11)0.0761 (12)−0.0002 (7)−0.0078 (7)0.0168 (10)
C170.0646 (10)0.0396 (9)0.0351 (8)−0.0043 (8)0.0242 (7)0.0091 (7)

Geometric parameters (Å, °)

O1—C11.2257 (15)C7—H70.95
O2—C121.3403 (14)C8—C91.3917 (19)
O2—C21.4411 (14)C9—C101.3788 (18)
O3—C121.1934 (15)C9—H90.95
O4—C121.3195 (15)C10—H100.95
O4—C131.4854 (15)C11—H11A0.98
O5—C81.3694 (15)C11—H11B0.98
O5—C171.4188 (18)C11—H11C0.98
N1—C11.3404 (15)C13—C151.498 (2)
N1—C111.4516 (15)C13—C161.501 (2)
N1—C41.4679 (15)C13—C141.512 (2)
C1—C21.5182 (16)C14—H14A0.98
C2—C31.5150 (18)C14—H14B0.98
C2—H21.00C14—H14C0.98
C3—C41.5459 (16)C15—H15A0.98
C3—H3A0.99C15—H15B0.98
C3—H3B0.99C15—H15C0.98
C4—C51.5112 (16)C16—H16A0.98
C4—H41.00C16—H16B0.98
C5—C61.3807 (17)C16—H16C0.98
C5—C101.3951 (17)C17—H17A0.98
C6—C71.3970 (17)C17—H17B0.98
C6—H60.95C17—H17C0.98
C7—C81.3807 (18)
C12—O2—C2114.90 (9)C9—C10—C5121.08 (12)
C12—O4—C13120.12 (11)C9—C10—H10119.5
C8—O5—C17117.54 (11)C5—C10—H10119.5
C1—N1—C11122.27 (10)N1—C11—H11A109.5
C1—N1—C4115.26 (9)N1—C11—H11B109.5
C11—N1—C4120.90 (10)H11A—C11—H11B109.5
O1—C1—N1126.54 (11)N1—C11—H11C109.5
O1—C1—C2125.62 (11)H11A—C11—H11C109.5
N1—C1—C2107.83 (10)H11B—C11—H11C109.5
O2—C2—C3113.61 (10)O3—C12—O4128.22 (11)
O2—C2—C1107.08 (9)O3—C12—O2124.61 (11)
C3—C2—C1105.26 (9)O4—C12—O2107.17 (10)
O2—C2—H2110.2O4—C13—C15109.70 (11)
C3—C2—H2110.2O4—C13—C16109.42 (12)
C1—C2—H2110.2C15—C13—C16113.41 (17)
C2—C3—C4105.40 (9)O4—C13—C14101.90 (12)
C2—C3—H3A110.7C15—C13—C14112.05 (16)
C4—C3—H3A110.7C16—C13—C14109.72 (14)
C2—C3—H3B110.7C13—C14—H14A109.5
C4—C3—H3B110.7C13—C14—H14B109.5
H3A—C3—H3B108.8H14A—C14—H14B109.5
N1—C4—C5111.08 (9)C13—C14—H14C109.5
N1—C4—C3102.39 (10)H14A—C14—H14C109.5
C5—C4—C3114.10 (10)H14B—C14—H14C109.5
N1—C4—H4109.7C13—C15—H15A109.5
C5—C4—H4109.7C13—C15—H15B109.5
C3—C4—H4109.7H15A—C15—H15B109.5
C6—C5—C10118.05 (11)C13—C15—H15C109.5
C6—C5—C4121.46 (11)H15A—C15—H15C109.5
C10—C5—C4120.49 (11)H15B—C15—H15C109.5
C5—C6—C7121.68 (12)C13—C16—H16A109.5
C5—C6—H6119.2C13—C16—H16B109.5
C7—C6—H6119.2H16A—C16—H16B109.5
C8—C7—C6119.19 (12)C13—C16—H16C109.5
C8—C7—H7120.4H16A—C16—H16C109.5
C6—C7—H7120.4H16B—C16—H16C109.5
O5—C8—C7125.01 (12)O5—C17—H17A109.5
O5—C8—C9115.06 (12)O5—C17—H17B109.5
C7—C8—C9119.93 (12)H17A—C17—H17B109.5
C10—C9—C8120.04 (12)O5—C17—H17C109.5
C10—C9—H9120.0H17A—C17—H17C109.5
C8—C9—H9120.0H17B—C17—H17C109.5
C11—N1—C1—O1−12.17 (19)C3—C4—C5—C10−58.06 (15)
C4—N1—C1—O1−177.97 (11)C10—C5—C6—C70.94 (18)
C11—N1—C1—C2167.57 (11)C4—C5—C6—C7−179.13 (11)
C4—N1—C1—C21.77 (13)C5—C6—C7—C80.63 (18)
C12—O2—C2—C3−88.44 (12)C17—O5—C8—C7−2.06 (19)
C12—O2—C2—C1155.79 (10)C17—O5—C8—C9177.48 (13)
O1—C1—C2—O2−48.13 (15)C6—C7—C8—O5177.96 (11)
N1—C1—C2—O2132.13 (10)C6—C7—C8—C9−1.56 (19)
O1—C1—C2—C3−169.34 (11)O5—C8—C9—C10−178.65 (12)
N1—C1—C2—C310.92 (12)C7—C8—C9—C100.9 (2)
O2—C2—C3—C4−135.30 (10)C8—C9—C10—C50.7 (2)
C1—C2—C3—C4−18.46 (12)C6—C5—C10—C9−1.61 (18)
C1—N1—C4—C5−135.47 (11)C4—C5—C10—C9178.45 (11)
C11—N1—C4—C558.52 (14)C13—O4—C12—O30.5 (2)
C1—N1—C4—C3−13.27 (13)C13—O4—C12—O2−179.21 (10)
C11—N1—C4—C3−179.29 (11)C2—O2—C12—O30.52 (18)
C2—C3—C4—N118.89 (12)C2—O2—C12—O4−179.77 (9)
C2—C3—C4—C5139.01 (11)C12—O4—C13—C15−63.23 (18)
N1—C4—C5—C6−122.88 (12)C12—O4—C13—C1661.79 (16)
C3—C4—C5—C6122.01 (12)C12—O4—C13—C14177.89 (14)
N1—C4—C5—C1057.05 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.352.9633 (15)119
C4—H4···O1ii1.002.563.5238 (15)162
C11—H11A···O10.982.472.8652 (16)104
C15—H15A···O30.982.453.011 (3)116
C16—H16B···O30.982.442.9904 (19)115
C17—H17A···O3iii0.982.383.324 (2)161

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2562).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrasekhar, S., Jagadeshwar, V. & Prakash, S. J. (2005). Tetrahedron Lett.46, 3127–3129.
  • Chandrasekhar, S., Saritha, B., Jagadeshwar, V. & Prakash, S. J. (2006). Tetrahedron Asymmetry, 17, 1380–1386.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Gurjar, M. K., Borhade, R. G., Puranik, V. G. & Ramana, C. V. (2006). Tetrahedron Lett.47, 6979–6981.
  • Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett.27, 5393–5396.
  • Matkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr 71, 13245z.
  • Mohammat, M. F., Shaameri, Z., Hamzah, A. S., Fun, H.-K. & Chantrapromma, S. (2008). Acta Cryst. E64, o578–o579. [PMC free article] [PubMed]
  • Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem.76, 2224–2227.
  • Royles, B. J. L. (1996). Chem. Rev.95, 1961–2001.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yoda, H., Nakajima, T. & Takabe, K. (1996). Tetrahedron Lett.31, 5531–5534.

Les articles de Acta Crystallographica Section E: Structure Reports Online ont été offerts à titre gracieux par International Union of Crystallography.