PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o692.
Published online 2008 March 12. doi:  10.1107/S1600536808006132
PMCID: PMC2960894

Bis(4-nitro­phen­yl) 1,3-phenyl­ene­dimethyl­ene dicarbonate

Abstract

In the title mol­ecule, C22H16N2O10, the dihedral angles between the benzene rings of the 4-nitro­phenyl groups and the central benzene ring are 32.7 (1) and 34.7 (1)°, while the dihedral angle between the two benzene rings of the 4-nitro­phenyl groups is 3.6 (2)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link mol­ecules into centrosymmetric dimers.

Related literature

For related literature, see: Nawazish Ali et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o692-scheme1.jpg

Experimental

Crystal data

  • C22H16N2O10
  • M r = 468.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o692-efi1.jpg
  • a = 8.5956 (4) Å
  • b = 9.2367 (5) Å
  • c = 14.1550 (8) Å
  • α = 94.094 (2)°
  • β = 107.134 (3)°
  • γ = 105.674 (3)°
  • V = 1020.00 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 150 (1) K
  • 0.34 × 0.20 × 0.20 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.808, T max = 0.980
  • 10107 measured reflections
  • 4580 independent reflections
  • 3182 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.166
  • S = 1.15
  • 4580 reflections
  • 308 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO–SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006132/cf2186sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006132/cf2186Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission (HEC) of Pakistan, Materials and Manufacturing Ontario (MMO), Canada, NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

For background information and relevant references see Ali et al. (2008). In the title molecule (Fig. 1) the dihedral angles between the benzene rings of the p-nitrophenyl groups and the central benzene ring are 32.7 (1) (for C9—C14) and 34.7 (1)° (for C17—C22), while the dihedral angle between the two benzene rings of the p-nitrophenyl groups is 3.6 (2)°. In the crystal structure, weak intermolecluar C—H···O hydrogen bonds link molecules into centrosymmetric dimers (Fig. 2).

Experimental

A solution of 4-nitrophenylchloroformate (14.1 g, 70 mmol) in dry dichloromethane (70 ml) was added dropwise via a 250 ml separatory funnel to a solution of 1,3-phenylenedimethanol (4.82 g, 35 mmol) in anhydrous pyridine (5.38 g, 5.5 ml, 68.0 mmol) and dry dichloromethane (20 ml) in a 250 ml round-bottom flask. A white suspension appeared which was stirred gently at room temperature for 10 h. After this time more dry dichloromethane (50 ml) was added, which dissolved the suspension and then the reaction mixture was stirred for another 6 h. It was then quenched by adding deionized water (50 ml). The reaction mixture was transferred to a separatory funnel (500 ml), and the lower organic phase was removed. The aqueous phase was washed with dichloromethane (30 ml x 3), and all the dichloromethane solutions were combined. These were then washed with deionized water (40 ml x 3), a 1.0% solution of acetic acid (50 ml x 4) and once more with deionized water (40 ml x 3), and then dried over anhydrous magnesium sulfate and filtered. After filtration, the solvent was removed by rotary evaporator. The product was dried in air overnight in a fume hood and then in a vacuum oven for 24 h at room temperature (< 1 Torr). The desired product was obtained in a moderate yield (11.4 g, 70.0%) as a white solid; the product was recrystallized by dissolving in a mixture of dichloromethane and ethanol (95%) (1:1). The reaction mixture was heated at 358 K, and filtered after 40 minutes. X-ray quality crystals were obtained after slow evaporation of the solvent at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and they were included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Part of the crystal structure with weak intermolecular C—H···O hydrogen bonds shown as dashed lines.

Crystal data

C22H16N2O10Z = 2
Mr = 468.37F000 = 484
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5956 (4) ÅCell parameters from 10107 reflections
b = 9.2367 (5) Åθ = 2.6–27.5º
c = 14.1550 (8) ŵ = 0.12 mm1
α = 94.094 (2)ºT = 150 (1) K
β = 107.134 (3)ºBlock, colourless
γ = 105.674 (3)º0.34 × 0.20 × 0.20 mm
V = 1020.00 (10) Å3

Data collection

Bruker–Nonius KappaCCD diffractometer4580 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 150(2) Kθmin = 2.6º
[var phi] scans and ω scans with κ offsetsh = −11→10
Absorption correction: multi-scan(SORTAV; Blessing, 1995)k = −11→11
Tmin = 0.808, Tmax = 0.980l = −18→18
10107 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064  w = 1/[σ2(Fo2) + (0.035P)2 + 1.3721P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.30 e Å3
4580 reflectionsΔρmin = −0.26 e Å3
308 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8872 (3)0.1353 (2)0.51451 (16)0.0340 (5)
O20.6463 (3)0.2045 (3)0.48906 (18)0.0406 (6)
O30.8682 (3)0.3232 (2)0.43660 (16)0.0339 (5)
O40.5734 (3)0.8621 (3)0.32218 (18)0.0493 (7)
O50.5700 (3)0.7631 (3)0.17823 (17)0.0453 (6)
O60.7702 (3)0.1855 (2)0.94414 (15)0.0321 (5)
O70.7572 (3)0.4000 (2)1.02591 (16)0.0346 (5)
O80.6017 (3)0.1596 (2)1.03074 (15)0.0304 (5)
O90.1915 (5)0.4431 (4)1.2504 (3)0.0781 (10)
O100.2930 (3)0.3121 (3)1.35819 (18)0.0490 (7)
N10.6000 (3)0.7673 (3)0.26870 (19)0.0343 (6)
N20.2722 (4)0.3547 (3)1.2770 (2)0.0413 (7)
C10.8609 (4)0.1437 (3)0.7314 (2)0.0289 (6)
H1A0.78260.19490.69960.035*
C20.9034 (4)0.0426 (3)0.6733 (2)0.0269 (6)
C31.0188 (4)−0.0314 (4)0.7203 (2)0.0326 (7)
H3A1.0505−0.09930.68140.039*
C41.0875 (4)−0.0059 (4)0.8237 (2)0.0388 (8)
H4A1.1658−0.05710.85560.047*
C51.0431 (4)0.0932 (4)0.8811 (2)0.0363 (7)
H5A1.08930.10820.95210.044*
C60.9314 (4)0.1712 (3)0.8356 (2)0.0313 (7)
C70.8208 (4)0.0058 (3)0.5615 (2)0.0333 (7)
H7A0.8443−0.08540.53540.040*
H7B0.6954−0.01730.54440.040*
C80.7845 (4)0.2182 (3)0.4820 (2)0.0300 (6)
C90.7965 (4)0.4351 (3)0.3983 (2)0.0288 (6)
C100.7170 (4)0.5092 (3)0.4481 (2)0.0311 (7)
H10A0.70520.48390.51000.037*
C110.6548 (4)0.6215 (3)0.4058 (2)0.0314 (7)
H11A0.60080.67580.43870.038*
C120.6728 (4)0.6530 (3)0.3153 (2)0.0287 (6)
C130.7562 (4)0.5817 (4)0.2664 (2)0.0320 (7)
H13A0.76910.60800.20490.038*
C140.8204 (4)0.4712 (3)0.3092 (2)0.0310 (7)
H14A0.87990.42080.27810.037*
C150.8850 (4)0.2793 (4)0.8979 (3)0.0382 (8)
H15A0.98870.34770.95010.046*
H15B0.82670.34240.85560.046*
C160.7147 (4)0.2644 (3)1.0016 (2)0.0269 (6)
C170.5156 (4)0.2113 (3)1.0894 (2)0.0261 (6)
C180.5105 (4)0.1426 (3)1.1723 (2)0.0284 (6)
H18A0.56210.06421.18650.034*
C190.4293 (4)0.1892 (3)1.2346 (2)0.0295 (6)
H19A0.42710.14611.29330.035*
C200.3518 (4)0.2999 (3)1.2088 (2)0.0294 (6)
C210.3483 (4)0.3636 (3)1.1233 (2)0.0312 (7)
H21A0.28980.43681.10670.037*
C220.4322 (4)0.3182 (3)1.0620 (2)0.0279 (6)
H22A0.43230.35971.00250.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0368 (12)0.0373 (12)0.0328 (11)0.0141 (10)0.0145 (10)0.0116 (9)
O20.0349 (13)0.0401 (13)0.0535 (15)0.0122 (10)0.0215 (11)0.0171 (11)
O30.0352 (12)0.0365 (12)0.0347 (12)0.0114 (10)0.0163 (10)0.0116 (10)
O40.0688 (18)0.0461 (15)0.0451 (14)0.0304 (14)0.0230 (13)0.0126 (12)
O50.0525 (15)0.0504 (15)0.0315 (12)0.0159 (12)0.0094 (11)0.0155 (11)
O60.0388 (12)0.0276 (11)0.0331 (11)0.0059 (9)0.0210 (10)0.0018 (9)
O70.0409 (12)0.0249 (12)0.0371 (12)0.0039 (9)0.0185 (10)0.0001 (9)
O80.0381 (12)0.0240 (11)0.0351 (11)0.0082 (9)0.0217 (10)0.0060 (9)
O90.110 (3)0.081 (2)0.102 (3)0.070 (2)0.078 (2)0.0417 (19)
O100.0583 (16)0.0476 (15)0.0417 (14)0.0040 (12)0.0308 (13)−0.0023 (11)
N10.0335 (14)0.0357 (15)0.0321 (14)0.0068 (12)0.0105 (12)0.0111 (12)
N20.0466 (17)0.0318 (15)0.0512 (18)0.0068 (13)0.0302 (15)0.0010 (13)
C10.0275 (15)0.0283 (15)0.0332 (16)0.0083 (12)0.0135 (13)0.0064 (13)
C20.0259 (15)0.0261 (15)0.0294 (15)0.0060 (12)0.0114 (12)0.0056 (12)
C30.0328 (16)0.0361 (17)0.0366 (17)0.0152 (14)0.0180 (14)0.0077 (14)
C40.0333 (17)0.050 (2)0.0390 (18)0.0189 (16)0.0137 (15)0.0152 (16)
C50.0319 (16)0.047 (2)0.0261 (15)0.0045 (15)0.0105 (13)0.0049 (14)
C60.0306 (16)0.0287 (16)0.0349 (16)0.0022 (13)0.0182 (14)0.0026 (13)
C70.0425 (18)0.0285 (16)0.0299 (16)0.0112 (14)0.0127 (14)0.0058 (13)
C80.0357 (17)0.0294 (16)0.0235 (14)0.0092 (13)0.0087 (13)0.0034 (12)
C90.0308 (15)0.0265 (15)0.0260 (14)0.0053 (12)0.0076 (12)0.0051 (12)
C100.0377 (17)0.0299 (16)0.0229 (14)0.0059 (13)0.0103 (13)0.0022 (12)
C110.0341 (16)0.0290 (16)0.0280 (15)0.0048 (13)0.0106 (13)0.0017 (12)
C120.0284 (15)0.0261 (15)0.0265 (15)0.0031 (12)0.0059 (12)0.0051 (12)
C130.0312 (16)0.0350 (17)0.0256 (15)0.0014 (13)0.0108 (13)0.0068 (13)
C140.0279 (15)0.0330 (17)0.0302 (15)0.0047 (13)0.0113 (13)0.0041 (13)
C150.0449 (19)0.0300 (17)0.0402 (18)0.0003 (14)0.0262 (16)0.0001 (14)
C160.0280 (15)0.0261 (16)0.0242 (14)0.0051 (12)0.0085 (12)0.0025 (12)
C170.0284 (15)0.0236 (14)0.0251 (14)0.0046 (12)0.0112 (12)−0.0005 (11)
C180.0316 (16)0.0245 (15)0.0301 (15)0.0077 (12)0.0118 (13)0.0067 (12)
C190.0314 (16)0.0290 (16)0.0276 (15)0.0038 (13)0.0132 (13)0.0067 (12)
C200.0299 (15)0.0250 (15)0.0330 (16)0.0028 (12)0.0164 (13)−0.0021 (12)
C210.0288 (15)0.0277 (16)0.0362 (17)0.0088 (13)0.0097 (13)0.0032 (13)
C220.0300 (15)0.0277 (15)0.0229 (14)0.0067 (12)0.0063 (12)0.0037 (12)

Geometric parameters (Å, °)

O1—C81.324 (4)C5—H5A0.950
O1—C71.472 (4)C6—C151.494 (4)
O2—C81.195 (4)C7—H7A0.990
O3—C81.362 (3)C7—H7B0.990
O3—C91.404 (3)C9—C101.379 (4)
O4—N11.227 (3)C9—C141.385 (4)
O5—N11.225 (3)C10—C111.385 (4)
O6—C161.323 (3)C10—H10A0.950
O6—C151.467 (3)C11—C121.377 (4)
O7—C161.199 (3)C11—H11A0.950
O8—C161.355 (3)C12—C131.382 (4)
O8—C171.400 (3)C13—C141.382 (4)
O9—N21.219 (4)C13—H13A0.950
O10—N21.220 (4)C14—H14A0.950
N1—C121.468 (4)C15—H15A0.990
N2—C201.471 (4)C15—H15B0.990
C1—C21.391 (4)C17—C181.380 (4)
C1—C61.394 (4)C17—C221.383 (4)
C1—H1A0.950C18—C191.386 (4)
C2—C31.392 (4)C18—H18A0.950
C2—C71.501 (4)C19—C201.379 (4)
C3—C41.384 (4)C19—H19A0.950
C3—H3A0.950C20—C211.378 (4)
C4—C51.381 (4)C21—C221.389 (4)
C4—H4A0.950C21—H21A0.950
C5—C61.390 (4)C22—H22A0.950
C8—O1—C7116.3 (2)C9—C10—H10A120.7
C8—O3—C9119.8 (2)C11—C10—H10A120.7
C16—O6—C15114.3 (2)C12—C11—C10118.7 (3)
C16—O8—C17118.4 (2)C12—C11—H11A120.7
O5—N1—O4123.6 (3)C10—C11—H11A120.7
O5—N1—C12117.9 (3)C11—C12—C13122.9 (3)
O4—N1—C12118.5 (2)C11—C12—N1118.5 (3)
O9—N2—O10123.2 (3)C13—C12—N1118.6 (3)
O9—N2—C20118.2 (3)C12—C13—C14118.4 (3)
O10—N2—C20118.6 (3)C12—C13—H13A120.8
C2—C1—C6121.0 (3)C14—C13—H13A120.8
C2—C1—H1A119.5C13—C14—C9118.8 (3)
C6—C1—H1A119.5C13—C14—H14A120.6
C1—C2—C3119.2 (3)C9—C14—H14A120.6
C1—C2—C7121.4 (3)O6—C15—C6106.4 (2)
C3—C2—C7119.3 (3)O6—C15—H15A110.4
C4—C3—C2119.9 (3)C6—C15—H15A110.4
C4—C3—H3A120.0O6—C15—H15B110.4
C2—C3—H3A120.0C6—C15—H15B110.4
C5—C4—C3120.6 (3)H15A—C15—H15B108.6
C5—C4—H4A119.7O7—C16—O6128.0 (3)
C3—C4—H4A119.7O7—C16—O8126.2 (3)
C4—C5—C6120.4 (3)O6—C16—O8105.7 (2)
C4—C5—H5A119.8C18—C17—C22122.3 (3)
C6—C5—H5A119.8C18—C17—O8116.0 (2)
C5—C6—C1118.8 (3)C22—C17—O8121.6 (2)
C5—C6—C15120.2 (3)C17—C18—C19119.2 (3)
C1—C6—C15120.9 (3)C17—C18—H18A120.4
O1—C7—C2110.4 (2)C19—C18—H18A120.4
O1—C7—H7A109.6C20—C19—C18118.0 (3)
C2—C7—H7A109.6C20—C19—H19A121.0
O1—C7—H7B109.6C18—C19—H19A121.0
C2—C7—H7B109.6C21—C20—C19123.2 (3)
H7A—C7—H7B108.1C21—C20—N2118.6 (3)
O2—C8—O1128.1 (3)C19—C20—N2118.2 (3)
O2—C8—O3126.4 (3)C20—C21—C22118.5 (3)
O1—C8—O3105.5 (2)C20—C21—H21A120.8
C10—C9—C14122.6 (3)C22—C21—H21A120.8
C10—C9—O3122.7 (3)C17—C22—C21118.6 (3)
C14—C9—O3114.6 (3)C17—C22—H22A120.7
C9—C10—C11118.5 (3)C21—C22—H22A120.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···O10i0.952.553.134 (4)120
C15—H15B···O9i0.992.583.504 (4)155
C21—H21A···O7i0.952.503.264 (3)138

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2186).

References

  • Nawazish Ali, S., Begum, S., Winnik, M. A. & Lough, A. J. (2008). Acta Cryst. E64, o281. [PMC free article] [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography