PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 April 1; 64(Pt 4): o650.
Published online 2008 March 5. doi:  10.1107/S1600536808005333
PMCID: PMC2960889

4-Amino-13-(1-naphth­yl)-[2,2]paracyclo­phane

Abstract

The title compound [systematic name: 12-amino-42-(1-naphth­yl)-1,4(1,4)-dibenzenacyclo­hexa­phane], C26H23N, was synthesized from 4-amino-13-bromo-[2,2]paracyclo­phane and 1-naphthalene­boronic acid in the presence of 1,4-dioxane. It is a new cyclo­phane-derived compound which can be regarded as a prospective ligand for asymmetric synthesis and catalysis. The benzene rings of the paracyclo­phane units are very slightly deformed from planarity as shallow boats.

Related literature

For related literature on paracyclo­phane chemistry, see: Cipiciani et al. (1997 [triangle]); on diphosphanes, see: Pye et al. (1997 [triangle]); on oxazoline-phosphanes, see: Wu et al. (2003 [triangle]); on oxazoline-imidazolium, see: Bolm et al. (2003 [triangle]); on oxazoline-selenides, see: Hou et al. (2000 [triangle]); on oxazoline-alcohols, see: Wu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o650-scheme1.jpg

Experimental

Crystal data

  • C26H23N
  • M r = 349.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o650-efi1.jpg
  • a = 8.5261 (5) Å
  • b = 12.8123 (8) Å
  • c = 17.2065 (11) Å
  • V = 1879.6 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.990, T max = 0.993
  • 9879 measured reflections
  • 1901 independent reflections
  • 1690 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.159
  • S = 1.00
  • 1901 reflections
  • 245 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005333/kj2079sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005333/kj2079Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant Nos. 20441004, 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

supplementary crystallographic information

Comment

The chemistry of [2.2]paracyclophanes has attracted the interest of researchers since the middle of the last century. After a standstill period, investigations in this area have received a new impulse (Cipiciani et al., 1997) and recently there has been notable progress especially regarding the synthesis of new derivatives. [2.2]paracyclophane is unique as the strain in the molecule has become so large that the benzene rings have been substantially bent from planarity. The configurationally rigid [2. 2]paracyclophanyl unit makes the design of chiral ligands of different types possible. The [2.2]paracyclophane ligand has previously been included in diphosphanes, (Pye et al., 1997) oxazoline-phosphanes,(Wu et al., 2003) oxazoline-imidazolium,(Bolm et al., 2003) oxazoline-selenides, (Hou et al., 2000) oxazoline-alcohols,(Wu et al., 2001) and Schiff base phenols.

The benzene rings in the [2,2] paracyclophane are not planar. Their conformation can be described as an asymmetric boat conformation. The benzene C atoms which are directly bonded to the ethylene links of the paracyclophane deviate significantly from the least-squares planes running through the other four benzene C atoms. The largest deviations are found for the atoms C3 [0.117 (5) Å] and C12 [0.146 (4) Å], which are the atoms closest to the amino and naphtyl substituents of the benzene rings. The angle between the planes through the benzene rings is 6.0 (2) °. The N1—C1 bond length lies between the expected values for a C—N and a C=N bond, which is probably caused by p–π conjugation.

Experimental

A solution of 4-amino-13-bromo [2,2]paracyclophane (501.3 mg, 1.66 mmol), 1-naphthaleneboronic acid (428.3 mg, 2.49 mmol), KF (289.7 mg, 4.98 mmol), Pd-DPPF (13.6 mg, 0.0166 mmol) in 1,4-dioxane (5 ml) was stirred at 353–363k for 24 h under a slight overpressure of nitrogen. After this, reagents were added to the mixture at 24 h intervals. 1-naphthaleneboronic acid (0.55 mmol), KF (72.4 mg, 1.245 mmol), Pd-DPPF (13.6 mg, 0.0166 mmol) were added to the flask in the first two times, in the last two times, 1-naphthaleneboronic acid (0.55 mmol), KF (72.4 mg, 1.245 mmol), Pd-DPPF (6.78 mg, 0.0083 mmol) were added. The flask was kept at 353–363 K and stirred the whole time. After completion of the reaction, as indicated by TLC, water (5 ml) was added and the solution was filtered. The solution was extracted by dichloromethane (30 ml) and the solvent was removed on a rotary evaporator. The solid was subjected to chromatography on silica gel (eluent: petroleum ether / ethyl acetate =20:1). Pure product was isolated (yield 84.6%). Analysis, calculated for C26H23N: C, 89.36; H, 6.63; N, 4.01. Found: C, 89.03; H, 6.62; N, 3.93. The elemental analyses were performed with a Perkin Elmer PE2400II.

Refinement

All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: C—H = 0.93, 0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C-aromatic and methylene and N-amido) in all the cases. In the absence of significant anomalous scattering effects, 1406 Friedel pairs were merged. The absolute configuration was determined by synthesis.

Figures

Fig. 1.
The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.

Crystal data

C26H23NDx = 1.235 Mg m3
Mr = 349.45Mo Kα radiation λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3936 reflections
a = 8.5261 (5) Åθ = 2.7–25.1º
b = 12.8123 (8) ŵ = 0.07 mm1
c = 17.2065 (11) ÅT = 293 (2) K
V = 1879.6 (2) Å3Block, colorless
Z = 40.15 × 0.12 × 0.10 mm
F000 = 744

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1901 independent reflections
Radiation source: fine-focus sealed tube1690 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→10
Tmin = 0.990, Tmax = 0.993k = −14→15
9879 measured reflectionsl = −12→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.159  w = 1/[σ2(Fo2) + (0.0986P)2 + 0.8216P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.005
1901 reflectionsΔρmax = 0.37 e Å3
245 parametersΔρmin = −0.32 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2691 (6)0.4913 (3)0.2196 (3)0.0659 (12)
H1A0.20070.50660.25450.079*
H1B0.34990.53060.21310.079*
C10.2490 (5)0.4028 (3)0.1733 (2)0.0497 (11)
C20.1199 (5)0.3383 (4)0.1826 (3)0.0561 (12)
H20.04860.35320.22190.067*
C30.0935 (6)0.2543 (4)0.1365 (3)0.0628 (13)
C40.1940 (7)0.2352 (4)0.0744 (3)0.0683 (15)
H40.17280.18200.03920.082*
C50.3267 (7)0.2972 (4)0.0662 (3)0.0628 (14)
H50.39370.28560.02440.075*
C60.3618 (6)0.3758 (4)0.1187 (2)0.0515 (11)
C70.0003 (7)0.1612 (5)0.1707 (4)0.0833 (19)
H7A−0.05450.12630.12870.100*
H7B−0.07820.18820.20630.100*
C80.1025 (7)0.0790 (4)0.2147 (4)0.0692 (15)
H8A0.04860.05960.26220.083*
H8B0.11060.01690.18270.083*
C90.2692 (6)0.1156 (3)0.2358 (3)0.0517 (11)
C100.3837 (6)0.1093 (3)0.1808 (3)0.0539 (12)
H100.37530.05950.14170.065*
C110.5102 (6)0.1742 (3)0.1817 (3)0.0515 (11)
H110.59090.16400.14610.062*
C120.5201 (5)0.2548 (3)0.2347 (2)0.0417 (10)
C130.4179 (5)0.2553 (3)0.2981 (2)0.0394 (9)
C140.2894 (5)0.1865 (3)0.2960 (2)0.0465 (10)
H140.21620.18850.33610.056*
C150.6056 (5)0.3547 (4)0.2093 (3)0.0504 (11)
H15A0.71520.33860.20010.061*
H15B0.60050.40550.25100.061*
C160.5336 (6)0.4041 (4)0.1335 (3)0.0585 (13)
H16A0.54230.47940.13700.070*
H16B0.59550.38160.08920.070*
C170.4316 (5)0.3268 (3)0.3660 (2)0.0442 (10)
C180.3029 (6)0.3795 (4)0.3928 (3)0.0567 (12)
H180.20710.36860.36830.068*
C190.3088 (8)0.4494 (5)0.4558 (3)0.0711 (16)
H190.21900.48490.47130.085*
C200.4445 (9)0.4643 (5)0.4931 (3)0.0748 (18)
H200.44840.51090.53450.090*
C210.5830 (7)0.4106 (4)0.4706 (3)0.0630 (15)
C220.5777 (6)0.3395 (4)0.4069 (2)0.0479 (11)
C230.7156 (6)0.2835 (4)0.3886 (3)0.0599 (13)
H230.71430.23520.34820.072*
C240.8502 (7)0.2994 (5)0.4293 (4)0.0771 (18)
H240.93970.26140.41700.093*
C250.8549 (10)0.3729 (6)0.4899 (4)0.091 (2)
H250.94850.38500.51620.109*
C260.7244 (9)0.4258 (5)0.5102 (3)0.080 (2)
H260.72850.47320.55120.096*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.069 (3)0.048 (2)0.081 (3)0.005 (2)−0.001 (2)−0.009 (2)
C10.055 (3)0.042 (2)0.052 (2)0.007 (2)−0.010 (2)0.009 (2)
C20.044 (2)0.055 (3)0.069 (3)0.007 (2)−0.011 (2)0.005 (2)
C30.054 (3)0.062 (3)0.073 (3)−0.001 (3)−0.022 (3)0.002 (3)
C40.084 (4)0.060 (3)0.061 (3)−0.001 (3)−0.033 (3)−0.006 (3)
C50.081 (3)0.072 (3)0.036 (2)−0.002 (3)−0.005 (2)0.002 (2)
C60.063 (3)0.051 (2)0.041 (2)−0.006 (2)−0.003 (2)0.012 (2)
C70.059 (3)0.075 (4)0.116 (5)−0.024 (3)−0.026 (4)0.002 (4)
C80.072 (3)0.052 (3)0.083 (3)−0.026 (3)−0.013 (3)−0.002 (3)
C90.062 (3)0.035 (2)0.058 (2)−0.008 (2)−0.011 (2)0.0041 (19)
C100.068 (3)0.034 (2)0.060 (3)0.005 (2)−0.011 (2)−0.009 (2)
C110.055 (3)0.044 (2)0.055 (2)0.011 (2)0.000 (2)−0.007 (2)
C120.0367 (19)0.039 (2)0.049 (2)0.0018 (18)−0.0046 (18)−0.0019 (18)
C130.043 (2)0.0339 (19)0.042 (2)0.0011 (17)−0.0071 (17)0.0002 (16)
C140.052 (2)0.042 (2)0.045 (2)−0.006 (2)−0.004 (2)0.0073 (19)
C150.042 (2)0.049 (2)0.060 (3)−0.008 (2)0.010 (2)−0.003 (2)
C160.065 (3)0.062 (3)0.049 (2)−0.016 (3)0.013 (2)0.006 (2)
C170.054 (2)0.039 (2)0.040 (2)−0.0040 (19)−0.001 (2)0.0009 (18)
C180.063 (3)0.055 (3)0.052 (2)−0.003 (2)0.009 (2)−0.007 (2)
C190.087 (4)0.066 (3)0.060 (3)0.004 (3)0.015 (3)−0.014 (3)
C200.117 (5)0.060 (3)0.047 (3)−0.017 (3)0.016 (3)−0.013 (2)
C210.096 (4)0.055 (3)0.038 (2)−0.028 (3)−0.010 (3)0.009 (2)
C220.061 (3)0.043 (2)0.040 (2)−0.013 (2)−0.009 (2)0.0080 (18)
C230.061 (3)0.061 (3)0.057 (3)−0.004 (2)−0.017 (2)0.009 (2)
C240.062 (3)0.085 (4)0.084 (4)−0.012 (3)−0.026 (3)0.029 (3)
C250.101 (5)0.105 (5)0.068 (4)−0.048 (5)−0.044 (4)0.026 (4)
C260.104 (5)0.083 (4)0.054 (3)−0.035 (4)−0.028 (3)0.013 (3)

Geometric parameters (Å, °)

N1—C11.396 (6)C12—C151.537 (6)
N1—H1A0.8600C13—C141.406 (6)
N1—H1B0.8600C13—C171.489 (6)
C1—C21.386 (7)C14—H140.9300
C1—C61.389 (7)C15—C161.574 (7)
C2—C31.354 (7)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.391 (8)C16—H16A0.9700
C3—C71.549 (8)C16—H16B0.9700
C4—C51.390 (8)C17—C181.369 (6)
C4—H40.9300C17—C221.440 (6)
C5—C61.385 (7)C18—C191.406 (7)
C5—H50.9300C18—H180.9300
C6—C161.530 (7)C19—C201.337 (9)
C7—C81.563 (8)C19—H190.9300
C7—H7A0.9700C20—C211.421 (9)
C7—H7B0.9700C20—H200.9300
C8—C91.539 (7)C21—C261.398 (8)
C8—H8A0.9700C21—C221.426 (7)
C8—H8B0.9700C22—C231.413 (7)
C9—C101.362 (7)C23—C241.360 (7)
C9—C141.390 (6)C23—H230.9300
C10—C111.362 (7)C24—C251.405 (10)
C10—H100.9300C24—H240.9300
C11—C121.381 (6)C25—C261.349 (10)
C11—H110.9300C25—H250.9300
C12—C131.395 (6)C26—H260.9300
C1—N1—H1A120.0C14—C13—C17117.8 (4)
C1—N1—H1B120.0C9—C14—C13121.7 (4)
H1A—N1—H1B120.0C9—C14—H14119.2
C2—C1—C6118.7 (4)C13—C14—H14119.2
C2—C1—N1121.1 (5)C12—C15—C16112.7 (4)
C6—C1—N1120.2 (4)C12—C15—H15A109.0
C3—C2—C1122.6 (5)C16—C15—H15A109.0
C3—C2—H2118.7C12—C15—H15B109.0
C1—C2—H2118.7C16—C15—H15B109.0
C2—C3—C4119.1 (5)H15A—C15—H15B107.8
C2—C3—C7118.3 (5)C6—C16—C15114.6 (4)
C4—C3—C7118.1 (5)C6—C16—H16A108.6
C5—C4—C3118.6 (5)C15—C16—H16A108.6
C5—C4—H4120.7C6—C16—H16B108.6
C3—C4—H4120.7C15—C16—H16B108.6
C6—C5—C4121.7 (5)H16A—C16—H16B107.6
C6—C5—H5119.2C18—C17—C22118.2 (4)
C4—C5—H5119.2C18—C17—C13120.4 (4)
C5—C6—C1118.2 (5)C22—C17—C13121.4 (4)
C5—C6—C16119.2 (5)C17—C18—C19123.1 (5)
C1—C6—C16119.4 (4)C17—C18—H18118.5
C3—C7—C8114.6 (4)C19—C18—H18118.5
C3—C7—H7A108.6C20—C19—C18119.4 (6)
C8—C7—H7A108.6C20—C19—H19120.3
C3—C7—H7B108.6C18—C19—H19120.3
C8—C7—H7B108.6C19—C20—C21121.3 (5)
H7A—C7—H7B107.6C19—C20—H20119.3
C9—C8—C7115.1 (4)C21—C20—H20119.3
C9—C8—H8A108.5C26—C21—C20121.1 (5)
C7—C8—H8A108.5C26—C21—C22119.5 (6)
C9—C8—H8B108.5C20—C21—C22119.5 (5)
C7—C8—H8B108.5C23—C22—C21118.0 (4)
H8A—C8—H8B107.5C23—C22—C17123.6 (4)
C10—C9—C14117.9 (4)C21—C22—C17118.4 (5)
C10—C9—C8118.7 (4)C24—C23—C22120.7 (5)
C14—C9—C8119.3 (5)C24—C23—H23119.6
C11—C10—C9121.6 (4)C22—C23—H23119.6
C11—C10—H10119.2C23—C24—C25120.5 (7)
C9—C10—H10119.2C23—C24—H24119.8
C10—C11—C12120.8 (4)C25—C24—H24119.8
C10—C11—H11119.6C26—C25—C24120.3 (6)
C12—C11—H11119.6C26—C25—H25119.8
C11—C12—C13118.8 (4)C24—C25—H25119.8
C11—C12—C15117.6 (4)C25—C26—C21120.9 (6)
C13—C12—C15121.0 (4)C25—C26—H26119.5
C12—C13—C14117.7 (4)C21—C26—H26119.5
C12—C13—C17124.5 (4)
C6—C1—C2—C3−5.0 (3)C11—C12—C15—C1656.6 (5)
N1—C1—C2—C3177.2 (4)C13—C12—C15—C16−104.9 (5)
C1—C2—C3—C4−4.0 (3)C5—C6—C16—C15−99.3 (5)
C1—C2—C3—C7152.0 (4)C1—C6—C16—C1560.0 (6)
C2—C3—C4—C56.0 (5)C12—C15—C16—C624.3 (6)
C7—C3—C4—C5−150.0 (5)C12—C13—C17—C18132.4 (4)
C3—C4—C5—C61.0 (6)C14—C13—C17—C18−44.7 (5)
C4—C5—C6—C1−9.9 (6)C12—C13—C17—C22−50.0 (6)
C4—C5—C6—C16149.7 (4)C14—C13—C17—C22132.9 (4)
C2—C1—C6—C511.8 (5)C22—C17—C18—C193.4 (7)
N1—C1—C6—C5−170.4 (4)C13—C17—C18—C19−178.9 (4)
C2—C1—C6—C16−147.8 (4)C17—C18—C19—C20−1.6 (8)
N1—C1—C6—C1630.0 (6)C18—C19—C20—C21−0.3 (9)
C2—C3—C7—C8−87.2 (6)C19—C20—C21—C26−179.5 (5)
C4—C3—C7—C869.0 (7)C19—C20—C21—C220.3 (8)
C3—C7—C8—C915.1 (8)C26—C21—C22—C232.8 (7)
C7—C8—C9—C10−82.7 (6)C20—C21—C22—C23−176.9 (5)
C7—C8—C9—C1474.1 (7)C26—C21—C22—C17−178.7 (4)
C14—C9—C10—C11−3.8 (3)C20—C21—C22—C171.6 (7)
C8—C9—C10—C11153.4 (4)C18—C17—C22—C23175.1 (4)
C9—C10—C11—C12−5.6 (3)C13—C17—C22—C23−2.6 (7)
C10—C11—C12—C1314.2 (5)C18—C17—C22—C21−3.3 (6)
C10—C11—C12—C15−147.7 (3)C13—C17—C22—C21179.0 (4)
C11—C12—C13—C14−13.1 (5)C21—C22—C23—C24−1.8 (7)
C15—C12—C13—C14148.2 (4)C17—C22—C23—C24179.8 (5)
C11—C12—C13—C17169.7 (4)C22—C23—C24—C25−0.7 (8)
C15—C12—C13—C17−29.0 (6)C23—C24—C25—C262.4 (9)
C10—C9—C14—C134.5 (5)C24—C25—C26—C21−1.4 (9)
C8—C9—C14—C13−152.5 (4)C20—C21—C26—C25178.5 (5)
C12—C13—C14—C94.0 (5)C22—C21—C26—C25−1.3 (8)
C17—C13—C14—C9−178.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2079).

References

  • Bolm, C., Focken, T. & Raabe, G. (2003). Tetrahedron Asymmetry, 14, 1733–1746.
  • Cipiciani, A., Fringuelli, F., Mancini, V., Piermatti, O., Scappini, M. & Ruzziconi, R. (1997). Tetrahedron, 53, 11853–11858.
  • Hou, X.-L., Wu, X.-W., Dai, L.-X. & Cao, B.-X. (2000). Chem. Commun. pp. 1195–1196.
  • Pye, P. J., Rossen, K., Reamer, R. A., Tsou, N. N., Volante, R. P. & Reider, P. J. (1997). J. Am. Chem. Soc.119, 6207–6208.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). APEX2 and SAINT Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
  • Wu, X.-W., Hou, X.-L., Dai, L.-X., Tao, J., Cao, B.-X. & Sun, B. J. (2001). Tetrahedron Asymmetry, 12, 529–532.
  • Wu, X.-W., Yuan, X. K., Sun, W., Zhang, M.-J. & Hou, X.-L. (2003). Tetrahedron Asymmetry, 14, 107–112.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography