PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): i21.
Published online 2008 February 20. doi:  10.1107/S160053680800322X
PMCID: PMC2960881

A new sodium dimangnesium trivanadate, NaMg2V3O10

Abstract

A single crystal of NaMg2V3O10 has been prepared by solid-state reaction at 1173 K. The [Mg2(V3O10)] anions are built up from edge-sharing MgO6 octa­hedra to form [Mg4O18] units, which are linked to each other by trivanadate groups (V3O10). The Na+ ions are located in the tunnel space.

Related literature

For related literature, see: Barbier (1988 [triangle]); Brown & Altermatt (1985 [triangle]); Gopal & Calvo (1974 [triangle]); Krishnamachari & Calvo (1971 [triangle]); Mitiaev et al. (2004 [triangle]); Murashova et al. (1988a [triangle], 1988b [triangle]); Ng & Calvo (1972 [triangle]); Saux & Galy (1973 [triangle]).

Experimental

Crystal data

  • NaMg2V3O10
  • M r = 384.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i21-efi1.jpg
  • a = 6.7369 (1) Å
  • b = 6.7553 (1) Å
  • c = 9.6222 (1) Å
  • α = 104.325 (1)°
  • β = 100.604 (1)°
  • γ = 101.696 (1)°
  • V = 402.63 (1) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.66 mm−1
  • T = 293 (2) K
  • 0.4 × 0.07 × 0.03 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.871, T max = 0.965 (expected range = 0.809–0.896)
  • 3118 measured reflections
  • 1712 independent reflections
  • 1415 reflections with I > 2σ(I)
  • R int = 0.049
  • 2 standard reflections frequency: 120 min intensity decay: 0.4%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.095
  • S = 1.06
  • 1712 reflections
  • 146 parameters
  • Δρmax = 0.73 e Å−3
  • Δρmin = −1.18 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992 [triangle]; Macíček & Yordanov, 1992 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800322X/br2067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800322X/br2067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The synthesis and structural characterization of new materials characterized by mixed open frameworks of MO6 octahedra and XO4 tetrahedra sharing edges and/or corners delimiting tunnels where cations are located and study of their properties are an active area of research in solid state chemistry, due to their interest in the fields of catalysis, ion exchange and ion conduction. In the system MgO–V2O5, a small number of compounds have been structurally characterized now, namely, Mg2V2O7 (Gopal & Calvo, 1974), MgV2O6 (Ng & Calvo, 1972), Mg3(VO4)2 (Krishnamachari & Calvo, 1971) and MgV3O8 (Saux & Galy, 1973). The same is true for the inclusion of alkali elements into this system, to our knowledge, only the structure of NaMg4(VO4)3 (Murashova et al., 1988a), LiMg(VO4) (Barbier, 1988), K2MgV2O7 (Murashova et al., 1988b) and Na6Mg2(V4O15)(Mitiaev et al., 2004) have been determined. Extending our investigation a new magnesium trivanadate, NaMg2V3O10 has been prepared by a conventional solid-state reaction and characterized by single-crystal X-ray diffraction. The structure of NaMg2V3O10 consists of MgO6 octahedra and VO4 tetrahedral sharing corners and edges to form a three-dimensional framework. The Na+ are located in the tunnels space. A projection of the structure, showing the displacement ellipsoids, is presented in Fig 1. The Mg2 (V3O10)]- anions are built up from edge sharing MgO6 octahedra to form [Mg4O18] units, which are linked to each other by trivanadate groups (V3O10). The Mg4O18 basal unit is built up by the edge linkages of four MgO6 octahedra, Such a unit is formed by two kind of divalent-metal cations, one labeled as Mg1 share edge with another labelled Mg2 forming Mg2O10 dimers, repetition of the dimers ensured by centres of symmetry on the shared edge between two Mg1O6 leads to the formation of Mg4O10 unit. Each trivanadate is formed by three tetrahedra, V1O4, V2O4 and V3O4, interconnected through the corners O1 and O5. The V1, V2 and V3 tetrahedron shares the eight remaining O-atom corners with five Mg4O18 units forming ribbons running along the [011] direction (Fig. 2). The projection of the structure along the [001] show that the trivanadate groups and the MgO6 polyhedra form six side tunnels running along [001] in which Na+ cations are located (Fig3). The geometry of the VO4 tetrahedra is close to that generally observed. Two groups of distances can be distinguished. The V—O bonds corresponding to the two V—O—V bridges of the V3O10 groups are the largest one. Consequently, the two external tetrahedra V1 and V2 present one long V—O distance and three smaller ones. Whereas the cental V3 tetrahedron has two long and two shorter. The Mg atoms are surrounded by six O atoms and the sodium cations exhibit a sixfold coordination. The bond valence sums determined using the Brown & Altermatt (1985) formulation are in the agreement with the formal charges deduced from the chemical formula: 5.088, 5.020, 5.100 from V1 to V3 respectively; 0.858 for Na; 2,188, 1.960 for Mg1 and Mg2 respectively, and ranging from 1.928 to 2.197 for the oxygen atoms.

Experimental

The starting materials for synthesizing NaMg2V3O10 were NaVO3, V2O5 and Mg(NO3)2.7H2O. The stoichiometric mixture was heated in air, in a platinum crucible, after a progressive heating to 873 K, the mixture was heated at 1173 K, cooled to 773 K at rate of 5 K.hr-1 and then to room temperature. The parallelepiped crystals obtained after washing with hot water were brown. Quantitative analysis of these crystals, by electron microscope probe, revealed that they contain sodium, magnesium and vanadium.

Figures

Fig. 1.
A projection of NaMg2V3O10, showing the displacement ellipsoids.
Fig. 2.
View showing the ribbons running along the [011] direction.
Fig. 3.
Projection of the structure of NaMg2V3O10 along [001] direction.

Crystal data

NaMg2V3O10Z = 2
Mr = 384.42F000 = 368
Triclinic, P1Dx = 3.171 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.7369 (1) ÅCell parameters from 25 reflections
b = 6.7553 (1) Åθ = 1.5–27.0º
c = 9.6222 (1) ŵ = 3.66 mm1
α = 104.325 (1)ºT = 293 (2) K
β = 100.604 (1)ºParallelepiped, brown
γ = 101.696 (1)º0.4 × 0.07 × 0.03 mm
V = 402.625 (9) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.049
Radiation source: fine-focus sealed tubeθmax = 27.0º
Monochromator: graphiteθmin = 2.3º
T = 293(2) Kh = −8→8
ω/2θ scansk = −8→8
Absorption correction: ψ scan(North et al., 1968)l = −12→12
Tmin = 0.871, Tmax = 0.9652 standard reflections
3118 measured reflections every 120 min
1712 independent reflections intensity decay: 0.4%
1415 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0426P)2 + 0.4338P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max < 0.001
wR(F2) = 0.095Δρmax = 0.73 e Å3
S = 1.06Δρmin = −1.18 e Å3
1712 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
146 parametersExtinction coefficient: 0.003 (2)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.11192 (10)0.04819 (10)0.30906 (7)0.00700 (18)
V20.23427 (10)−0.33675 (10)−0.04757 (7)0.00795 (18)
V3−0.22756 (10)−0.42610 (10)0.38667 (7)0.00858 (19)
Mg1−0.20718 (18)−0.18407 (18)−0.01815 (13)0.0043 (3)
Mg2−0.76019 (19)−0.4331 (2)0.29306 (14)0.0098 (3)
Na0.6408 (4)0.0239 (3)0.3640 (3)0.0416 (6)
O10.0677 (4)0.1930 (5)0.4803 (3)0.0156 (6)
O20.2277 (4)0.2383 (4)0.2402 (3)0.0118 (6)
O3−0.2797 (5)−0.6006 (5)0.4778 (3)0.0172 (6)
O4−0.1271 (4)−0.0914 (5)0.2063 (3)0.0143 (6)
O50.0972 (4)−0.4778 (4)−0.2430 (3)0.0118 (6)
O60.2690 (5)−0.1090 (5)0.3424 (3)0.0163 (6)
O70.2151 (4)−0.5009 (4)0.0627 (3)0.0130 (6)
O8−0.4437 (4)−0.3693 (5)0.3187 (3)0.0159 (6)
O90.4808 (5)−0.2374 (5)−0.0409 (3)0.0188 (7)
O100.1292 (4)−0.1322 (4)0.0086 (3)0.0116 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0082 (3)0.0063 (3)0.0071 (3)0.0016 (2)0.0016 (2)0.0034 (2)
V20.0112 (3)0.0072 (3)0.0066 (3)0.0036 (2)0.0021 (2)0.0032 (2)
V30.0110 (3)0.0083 (3)0.0078 (3)0.0031 (2)0.0034 (2)0.0033 (2)
Mg10.0063 (6)0.0029 (5)0.0037 (6)0.0009 (4)0.0012 (4)0.0014 (4)
Mg20.0104 (7)0.0096 (6)0.0093 (6)0.0022 (5)0.0016 (5)0.0033 (5)
Na0.0371 (13)0.0245 (11)0.0622 (16)0.0043 (9)0.0221 (11)0.0066 (11)
O10.0171 (15)0.0156 (14)0.0122 (14)0.0003 (11)0.0059 (11)0.0020 (11)
O20.0143 (14)0.0099 (13)0.0114 (13)0.0023 (10)0.0029 (11)0.0045 (11)
O30.0259 (16)0.0128 (14)0.0188 (15)0.0092 (12)0.0101 (13)0.0087 (12)
O40.0123 (14)0.0150 (14)0.0136 (14)−0.0011 (11)0.0024 (11)0.0053 (11)
O50.0140 (14)0.0133 (14)0.0101 (13)0.0054 (11)0.0050 (11)0.0043 (11)
O60.0184 (15)0.0149 (14)0.0198 (15)0.0075 (11)0.0059 (12)0.0092 (12)
O70.0150 (14)0.0129 (14)0.0124 (13)0.0059 (11)0.0014 (11)0.0057 (11)
O80.0124 (14)0.0175 (14)0.0190 (15)0.0051 (11)0.0034 (11)0.0069 (12)
O90.0173 (16)0.0167 (15)0.0241 (17)0.0046 (12)0.0073 (13)0.0074 (13)
O100.0127 (13)0.0097 (13)0.0142 (13)0.0038 (10)0.0041 (11)0.0054 (11)

Geometric parameters (Å, °)

V1—O41.672 (3)Mg2—Mg1i3.1470 (17)
V1—O61.688 (3)Mg2—V2i3.4044 (14)
V1—O21.704 (3)Mg2—Naiv3.492 (3)
V1—O11.806 (3)Mg2—Naii3.575 (3)
V2—O91.643 (3)Na—O3viii2.404 (4)
V2—O101.694 (3)Na—O62.435 (4)
V2—O71.717 (3)Na—O4ix2.477 (4)
V2—O51.848 (3)Na—O8ix2.509 (4)
V2—Mg13.3760 (14)Na—O6x2.665 (4)
V2—Mg2i3.4044 (14)Na—O1ix2.771 (4)
V3—O81.642 (3)Na—V1ix3.291 (2)
V3—O31.655 (3)Na—V3ix3.380 (2)
V3—O1ii1.757 (3)Na—V1x3.474 (3)
V3—O5iii1.827 (3)Na—Mg2ix3.492 (3)
V3—Naiv3.380 (2)Na—Nax3.543 (5)
V3—Nav3.582 (2)O1—V3ii1.757 (3)
Mg1—O9iv2.020 (3)O1—Naiv2.771 (4)
Mg1—O42.028 (3)O2—Mg1vi2.049 (3)
Mg1—O2vi2.049 (3)O2—Mg2viii2.132 (3)
Mg1—O7iii2.051 (3)O3—Mg2vii2.120 (3)
Mg1—O10vi2.069 (3)O3—Nav2.404 (4)
Mg1—O102.178 (3)O4—Naiv2.477 (4)
Mg1—Mg2i3.1470 (17)O5—V3iii1.827 (3)
Mg1—Mg1vi3.240 (2)O5—Mg2i2.156 (3)
Mg1—V1vi3.2839 (13)O6—Mg2ix2.082 (3)
Mg2—O82.043 (3)O6—Nax2.665 (4)
Mg2—O6iv2.082 (3)O7—Mg1iii2.051 (3)
Mg2—O7iv2.117 (3)O7—Mg2ix2.117 (3)
Mg2—O3vii2.120 (3)O8—Naiv2.509 (4)
Mg2—O2v2.132 (3)O9—Mg1ix2.020 (3)
Mg2—O5i2.156 (3)O10—Mg1vi2.069 (3)
O4—V1—O6112.10 (15)O10vi—Mg1—O1080.59 (12)
O4—V1—O2113.54 (14)O8—Mg2—O6iv88.16 (13)
O6—V1—O2111.46 (14)O8—Mg2—O7iv86.61 (12)
O4—V1—O1104.42 (14)O6iv—Mg2—O7iv98.45 (12)
O6—V1—O1110.07 (14)O8—Mg2—O3vii90.45 (13)
O2—V1—O1104.72 (14)O6iv—Mg2—O3vii88.10 (13)
O9—V2—O10107.80 (14)O7iv—Mg2—O3vii172.73 (13)
O9—V2—O7110.35 (15)O8—Mg2—O2v88.64 (13)
O10—V2—O7111.25 (14)O6iv—Mg2—O2v176.66 (13)
O9—V2—O5107.91 (14)O7iv—Mg2—O2v80.40 (12)
O10—V2—O5107.49 (13)O3vii—Mg2—O2v92.89 (12)
O7—V2—O5111.87 (13)O8—Mg2—O5i173.94 (13)
O8—V3—O3109.72 (15)O6iv—Mg2—O5i95.28 (12)
O8—V3—O1ii106.39 (15)O7iv—Mg2—O5i87.95 (11)
O3—V3—O1ii106.04 (14)O3vii—Mg2—O5i94.64 (12)
O8—V3—O5iii111.97 (14)O2v—Mg2—O5i87.83 (11)
O3—V3—O5iii111.02 (14)O3viii—Na—O6105.48 (13)
O1ii—V3—O5iii111.43 (13)O3viii—Na—O4ix115.05 (13)
O9iv—Mg1—O496.22 (13)O6—Na—O4ix131.92 (14)
O9iv—Mg1—O2vi94.40 (13)O3viii—Na—O8ix163.72 (16)
O4—Mg1—O2vi168.05 (13)O6—Na—O8ix70.96 (12)
O9iv—Mg1—O7iii93.58 (13)O4ix—Na—O8ix76.24 (12)
O4—Mg1—O7iii100.80 (12)O3viii—Na—O6x70.20 (12)
O2vi—Mg1—O7iii83.95 (12)O6—Na—O6x92.11 (12)
O9iv—Mg1—O10vi100.55 (13)O4ix—Na—O6x124.66 (14)
O4—Mg1—O10vi88.02 (12)O8ix—Na—O6x93.84 (13)
O2vi—Mg1—O10vi84.66 (12)O3viii—Na—O1ix69.27 (11)
O7iii—Mg1—O10vi162.47 (13)O6—Na—O1ix162.23 (15)
O9iv—Mg1—O10178.74 (12)O4ix—Na—O1ix62.91 (10)
O4—Mg1—O1083.25 (12)O8ix—Na—O1ix109.07 (13)
O2vi—Mg1—O1086.24 (12)O6x—Na—O1ix70.12 (11)
O7iii—Mg1—O1085.40 (11)

Symmetry codes: (i) −x−1, −y−1, −z; (ii) −x, −y, −z+1; (iii) −x, −y−1, −z; (iv) x−1, y, z; (v) x−1, y−1, z; (vi) −x, −y, −z; (vii) −x−1, −y−1, −z+1; (viii) x+1, y+1, z; (ix) x+1, y, z; (x) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2067).

References

  • Barbier, J. (1988). Eur. J. Solid State Inorg. Chem.25, 609–619.
  • Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  • Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Fair, C. K. (1990). MolEN Enraf–Nonus, Delft, The Netherlands.
  • Gopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491–2493.
  • Krishnamachari, N. & Calvo, C. (1971). Can. J. Chem.49, 1629–1637.
  • Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst.25, 73–80.
  • Mitiaev, A., Mironov, A., Shpanchenko, R. & Antipov, E. (2004). Acta Cryst. C60, i56–i58. [PubMed]
  • Murashova, E. V., Velikodnyi, Yu. A. & Trunov, V. K. (1988a). Zh. Strukt. Khim.29, 182–184.
  • Murashova, E. V., Velikodnyi, Yu. A. & Trunov, V. K. (1988b). Russ. J. Inorg. Chem. (Zh. Neorg. Khim.), 33, 904–905.
  • Ng, H. N. & Calvo, C. (1972). Can. J. Chem.50, 3619–3624.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Saux, M. & Galy, J. (1973). C. R. Acad. Sci. Ser. C, 276, 81–84.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography