PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m481–m482.
Published online 2008 February 15. doi:  10.1107/S1600536808003048
PMCID: PMC2960876

Dichlorido-1κCl,3κCl-bis­{μ-2,2′-[pro­pane-1,3-diylbis(imino­methyl­ene)]di­phenol­ato}-1:2κ6 O,N,N′,O′:O,O′;2:3κ6 O,O′:O,N,N′,O′-tricopper(II)

Abstract

The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis­(2-hydroxy­benz­yl)-1,3-propane­diamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (An external file that holds a picture, illustration, etc.
Object name is e-64-0m481-efi1.jpg). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl ligands occupying the fifth coordination site.

Related literature

For related literature, see: Addison et al. (1984 [triangle]); Atakol et al. (1999 [triangle]); Cremer & Pople (1975 [triangle]); Ercan et al. (2002 [triangle]); Fukuhara et al. (1990 [triangle]); Gerli et al. (1991 [triangle]); Mikuriya et al. (2001 [triangle]); Song et al. (2003 [triangle], 2005 [triangle]); Spek (2003 [triangle]); Uhlenbrock et al. (1996 [triangle]); Yıldırım & Atakol (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m481-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C17H20N2O2)2Cl2]
  • M r = 830.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m481-efi2.jpg
  • a = 11.0189 (7) Å
  • b = 15.3861 (8) Å
  • c = 10.7441 (8) Å
  • β = 106.959 (7)°
  • V = 1742.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.01 mm−1
  • T = 100 (2) K
  • 0.36 × 0.22 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2002 [triangle]) T min = 0.531, T max = 0.766
  • 12067 measured reflections
  • 3481 independent reflections
  • 2969 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 1.10
  • 3481 reflections
  • 220 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2002 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2002 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003048/fi2056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003048/fi2056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

OA is grateful to DAAD for support and acknowledges the financial support of the Ankara University Research Fund (grant No. 20050705105).

supplementary crystallographic information

Comment

Bis-N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine is an ONNO type Schiff base and there have been various polynuclear complexes synthesized since 1990 (Fukuhara et al., 1990; Gerli et al., 1991; Uhlenbrock et al., 1996, Mikuriya et al., 2001).

In this study, N,N'-bis(salicylidene)-1,3-propane-diamine was reduced into a symmetrical phenol-amine compound by the help of NaBH4. A trinuclear Cu(II) complex was prepared by the reaction of the ligand obtained with CuCl2 and its molecular structure was determined. Previously, this complex had been prepared in MeOH solution and crystallized in its tetra-solvated form (Song et al., 2005). The trinuclear complex obtained in this structure is not solvated and has different crystallographic details.

As can seen from PLATON (Spek, 2003), the terminal Cu(II) ion has a square pyramidal coordination formed by the two phenolic oxygen and two iminic nitrogen atoms of the ligand and a chloride ion. There has been a T factor defined for five membered coordination sphere (Addison et al., 1984). This factor is given as T=a-b/60, where a and b correspond to two largest angles around the metal atom. If T=0 the coordination is an ideal square pyramid and if T=1 the coordination is ideal trigonal bipyramid. If the values listed in molecular geometry are employed the T value is found as 0.078 indicating that the terminal Cu(II) atoms has a near ideal square pyramidal symmetry. The Cu—Cl bond is longer than other coordination bonds (2.509 Å). The bond length in the square base are very close to each other (1.963 Å). The chalate ring (Cu2, N1, N2, C8, C9, C10) formed by the terminal Cu(II) ions has an almost ideal chair conformation. The conformation of the ring was analysed using PLATON. The Cremer-Pople puckering parameters are QT=1.374 (6), θ=-38.9 (2), [var phi]=120.34 (12)° (Cremer et al., 1975).

The central Cu(II) ion is coordinated between four phenolic oxygen donors. The Cu1—O2 and Cu1—O1 distances are 1.911 Å and 1.919 Å, respectively. The phenolic O atoms act as bridging ligands between the central and the terminal Cu ions. The distance between Cu2 and an L.S. plane through O1, N1, N2 and O2 is 0.1894 (3) Å.. That is why the six membered chelate ring conformation of Schiff base complexes was reported as almost ideal (Yıldırım et al., 2002). The smallest Cu—Cu distance determined in similar complexes was reported as 2.914 Å (Song et al., 2005; Song et al., 2003). The Cu2—Cu1 distance in the title compound is 2.9138 (3) Å and thus close to the shortest reported distances. In complexes containing m-bonds such as AcO– and HCOO– this distance is bigger than 3.0 Å (Ercan et al., 2002; Atakol et al., 1999).

Experimental

N,N'-bis(salicylidene)-1,3-propane-diamine was dissolved by slightly heating in MeOH (80 ml). NaBH4 was added into this solution in its solid form with small portions and the resulting mixture was rigorously stirred. The addition of NaBH4 was continued unless the solution became completely colorless. The colorless solution was mixed with ice (300 g) and kept on the bench for 24 h. The white precipitate was the reduced product of N,N'-bis(2-hydroxybenzyl)-1,3-propane-diamine (m.p. 379–380 K, yield % 87, the N—H streching band is observed at 3273 cm-1). N,N'-bis (2-hydroxybenzyl)-1,3-propane-diamine (0.285 g, 1 mmole) was dissolved in dmf (dimethyl-formamide)(20 ml) by heating and a solution of CuCl2.2H2O (0.255 g, 1.5 mmole) in hot dmf (20 ml) was added to it and the resulting mixture was kept on the bench for 4–5 d. The resulting crystals were filtered off, washed with EtOH and dried in oven at 353 K.

Refinement

H1A and H2A (for NH) were located in a Fourier map and only their positions refined [N—H = 0.82 (3) and 0.86 (3) Å, Uiso(H) = 0.028 and 0.028 Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, -y, 1 - z].

Crystal data

[Cu3(C17H20N2O2)2Cl2]F000 = 850
Mr = 830.25Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4076 reflections
a = 11.0189 (7) Åθ = 2.4–26.4º
b = 15.3861 (8) ŵ = 2.01 mm1
c = 10.7441 (8) ÅT = 100 (2) K
β = 106.959 (7)ºPrism, dark green
V = 1742.3 (2) Å30.36 × 0.22 × 0.14 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur diffractometer3481 independent reflections
Radiation source: fine-focus sealed tube2969 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 100(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 4.1º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2002)h = −13→13
Tmin = 0.531, Tmax = 0.766k = −18→18
12067 measured reflectionsl = −7→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075  w = 1/[σ2(Fo2) + (0.0379P)2 + 1.1376P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.019
3481 reflectionsΔρmax = 0.57 e Å3
220 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.00000.50000.01443 (11)
Cu20.02986 (3)0.187585 (17)0.48593 (3)0.01380 (10)
Cl10.04255 (6)0.16106 (4)0.71982 (6)0.02363 (16)
O1−0.10643 (15)0.09894 (10)0.43769 (17)0.0170 (4)
O20.12675 (15)0.08066 (10)0.48475 (17)0.0187 (4)
N1−0.09257 (18)0.28603 (13)0.4363 (2)0.0153 (4)
H1A−0.080 (3)0.3050 (19)0.369 (3)0.028*
N20.18192 (18)0.26353 (13)0.5115 (2)0.0158 (4)
H2A0.180 (3)0.2855 (19)0.437 (3)0.028*
C1−0.2034 (2)0.10818 (15)0.3275 (2)0.0153 (5)
C2−0.2429 (2)0.04128 (16)0.2376 (2)0.0185 (5)
H2−0.2027−0.01390.25310.022*
C3−0.3414 (2)0.05583 (17)0.1253 (3)0.0214 (5)
H3−0.36840.01020.06390.026*
C4−0.4010 (2)0.13600 (17)0.1012 (3)0.0222 (6)
H4−0.46800.14550.02360.027*
C5−0.3617 (2)0.20233 (16)0.1919 (2)0.0198 (5)
H5−0.40210.25740.17530.024*
C6−0.2644 (2)0.18960 (15)0.3063 (2)0.0159 (5)
C7−0.2269 (2)0.25755 (16)0.4097 (2)0.0188 (5)
H7A−0.28310.30860.38280.023*
H7B−0.23960.23440.49100.023*
C8−0.0623 (2)0.35758 (15)0.5329 (3)0.0202 (5)
H8A−0.06400.33490.61860.024*
H8B−0.12820.40310.50630.024*
C90.0669 (2)0.39773 (15)0.5461 (3)0.0216 (6)
H9A0.06780.41900.45940.026*
H9B0.07710.44890.60410.026*
C100.1804 (2)0.33853 (16)0.5985 (3)0.0208 (5)
H10A0.25900.37280.61050.025*
H10B0.17980.31630.68480.025*
C110.3017 (2)0.21331 (16)0.5631 (2)0.0191 (5)
H11A0.30260.18740.64770.023*
H11B0.37440.25390.57920.023*
C120.3198 (2)0.14203 (15)0.4743 (2)0.0160 (5)
C130.4258 (2)0.13781 (16)0.4284 (2)0.0198 (5)
H130.48550.18400.44700.024*
C140.4451 (2)0.06791 (17)0.3567 (3)0.0226 (6)
H140.51820.06580.32680.027*
C150.3588 (2)0.00111 (16)0.3285 (2)0.0205 (5)
H150.3731−0.04730.27970.025*
C160.2508 (2)0.00332 (15)0.3702 (2)0.0178 (5)
H160.1911−0.04290.34940.021*
C170.2309 (2)0.07401 (15)0.4429 (2)0.0152 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0114 (2)0.0123 (2)0.0181 (2)−0.00059 (15)0.00195 (17)0.00469 (16)
Cu20.01222 (16)0.01216 (15)0.01634 (17)0.00004 (10)0.00307 (12)0.00049 (11)
Cl10.0282 (3)0.0268 (3)0.0169 (3)0.0022 (3)0.0081 (3)0.0001 (3)
O10.0138 (8)0.0133 (8)0.0197 (9)−0.0007 (6)−0.0016 (7)0.0035 (7)
O20.0151 (9)0.0141 (8)0.0297 (10)−0.0003 (6)0.0110 (8)0.0025 (7)
N10.0147 (10)0.0151 (10)0.0164 (11)−0.0005 (8)0.0049 (9)0.0001 (8)
N20.0157 (10)0.0145 (10)0.0157 (11)−0.0019 (8)0.0022 (9)−0.0001 (9)
C10.0096 (11)0.0198 (12)0.0169 (13)−0.0009 (9)0.0047 (10)0.0066 (10)
C20.0146 (12)0.0189 (12)0.0228 (13)−0.0008 (9)0.0067 (10)0.0034 (11)
C30.0182 (12)0.0244 (13)0.0213 (14)−0.0060 (10)0.0053 (11)−0.0019 (11)
C40.0167 (12)0.0304 (15)0.0182 (14)−0.0028 (10)0.0030 (11)0.0053 (11)
C50.0132 (12)0.0218 (13)0.0246 (14)0.0018 (9)0.0057 (11)0.0070 (11)
C60.0104 (11)0.0176 (12)0.0213 (13)−0.0012 (9)0.0072 (10)0.0029 (10)
C70.0129 (11)0.0194 (12)0.0254 (14)0.0031 (9)0.0075 (11)0.0021 (11)
C80.0238 (13)0.0155 (12)0.0207 (14)0.0045 (10)0.0053 (11)−0.0033 (10)
C90.0266 (14)0.0148 (12)0.0228 (14)0.0011 (10)0.0061 (12)−0.0037 (10)
C100.0210 (13)0.0153 (12)0.0233 (14)−0.0041 (10)0.0020 (11)−0.0055 (11)
C110.0133 (12)0.0212 (12)0.0209 (14)−0.0010 (9)0.0019 (10)0.0012 (10)
C120.0138 (11)0.0181 (12)0.0140 (12)0.0012 (9)0.0010 (10)0.0034 (10)
C130.0136 (12)0.0247 (14)0.0198 (13)−0.0014 (10)0.0028 (10)0.0046 (11)
C140.0167 (12)0.0313 (14)0.0222 (14)0.0048 (11)0.0094 (11)0.0085 (12)
C150.0239 (13)0.0205 (13)0.0177 (13)0.0079 (10)0.0067 (11)0.0023 (10)
C160.0170 (12)0.0169 (12)0.0178 (13)0.0004 (9)0.0026 (10)0.0036 (10)
C170.0125 (11)0.0185 (12)0.0139 (12)0.0023 (9)0.0027 (10)0.0060 (10)

Geometric parameters (Å, °)

Cu2—Cl12.5092 (7)C7—H7B0.9900
Cu2—Cu12.9138 (3)C8—N11.483 (3)
Cu1—O2i1.9108 (16)C8—C91.520 (4)
Cu1—O1i1.9191 (15)C8—H8A0.9900
Cu1—Cu2i2.9138 (3)C8—H8B0.9900
O1—Cu11.9191 (15)C9—C101.517 (3)
O1—Cu21.9825 (16)C9—H9A0.9900
O2—Cu11.9108 (16)C9—H9B0.9900
O2—Cu21.9632 (16)C10—N21.488 (3)
N1—Cu21.995 (2)C10—H10A0.9900
N1—H1A0.82 (3)C10—H10B0.9900
N2—Cu21.995 (2)C11—N21.490 (3)
N2—H2A0.86 (3)C11—C121.505 (3)
C1—O11.351 (3)C11—H11A0.9900
C1—C21.392 (3)C11—H11B0.9900
C1—C61.408 (3)C12—C131.394 (3)
C2—C31.386 (3)C12—C171.406 (3)
C2—H20.9500C13—C141.376 (4)
C3—C41.386 (4)C13—H130.9500
C3—H30.9500C14—C151.373 (4)
C4—C51.390 (4)C14—H140.9500
C4—H40.9500C15—C161.389 (3)
C5—C61.389 (3)C15—H150.9500
C5—H50.9500C16—C171.393 (3)
C6—C71.493 (3)C16—H160.9500
C7—N11.489 (3)C17—O21.353 (3)
C7—H7A0.9900
O2—Cu1—O2i180.00 (10)C3—C4—C5119.2 (2)
O2—Cu1—O180.93 (7)C3—C4—H4120.4
O2i—Cu1—O199.07 (7)C5—C4—H4120.4
O2—Cu1—O1i99.07 (7)C6—C5—C4121.3 (2)
O2i—Cu1—O1i80.93 (7)C6—C5—H5119.4
O1—Cu1—O1i180.0C4—C5—H5119.4
O2—Cu1—Cu241.91 (5)C5—C6—C1118.5 (2)
O2i—Cu1—Cu2138.09 (5)C5—C6—C7122.3 (2)
O1—Cu1—Cu242.52 (5)C1—C6—C7119.1 (2)
O1i—Cu1—Cu2137.48 (5)N1—C7—C6113.15 (19)
O2—Cu1—Cu2i138.09 (5)N1—C7—H7A108.9
O2i—Cu1—Cu2i41.91 (5)C6—C7—H7A108.9
O1—Cu1—Cu2i137.48 (5)N1—C7—H7B109.0
O1i—Cu1—Cu2i42.52 (5)C6—C7—H7B108.9
Cu2—Cu1—Cu2i180.000 (11)H7A—C7—H7B107.8
O2—Cu2—O178.09 (7)N1—C8—C9112.4 (2)
O2—Cu2—N1163.99 (8)N1—C8—H8A109.1
O1—Cu2—N192.91 (7)C9—C8—H8A109.1
O2—Cu2—N293.17 (7)N1—C8—H8B109.1
O1—Cu2—N2168.74 (8)C9—C8—H8B109.1
N1—Cu2—N293.87 (8)H8A—C8—H8B107.9
O2—Cu2—Cl189.92 (5)C10—C9—C8116.0 (2)
O1—Cu2—Cl188.09 (5)C10—C9—H9A108.3
N1—Cu2—Cl1103.12 (6)C8—C9—H9A108.3
N2—Cu2—Cl199.10 (6)C10—C9—H9B108.3
O2—Cu2—Cu140.55 (5)C8—C9—H9B108.3
O1—Cu2—Cu140.86 (4)H9A—C9—H9B107.4
N1—Cu2—Cu1133.49 (6)N2—C10—C9113.1 (2)
N2—Cu2—Cu1132.54 (6)N2—C10—H10A109.0
Cl1—Cu2—Cu176.178 (16)C9—C10—H10A109.0
C1—O1—Cu1129.48 (14)N2—C10—H10B109.0
C1—O1—Cu2120.13 (13)C9—C10—H10B109.0
Cu1—O1—Cu296.62 (7)H10A—C10—H10B107.8
C17—O2—Cu1133.74 (15)N2—C11—C12114.1 (2)
C17—O2—Cu2125.53 (14)N2—C11—H11A108.7
Cu1—O2—Cu297.54 (7)C12—C11—H11A108.7
C8—N1—C7111.16 (19)N2—C11—H11B108.7
C8—N1—Cu2112.34 (15)C12—C11—H11B108.7
C7—N1—Cu2112.63 (15)H11A—C11—H11B107.6
C8—N1—H1A107 (2)C13—C12—C17118.5 (2)
C7—N1—H1A110 (2)C13—C12—C11122.5 (2)
Cu2—N1—H1A103 (2)C17—C12—C11118.8 (2)
C10—N2—C11109.87 (19)C14—C13—C12121.1 (2)
C10—N2—Cu2112.19 (15)C14—C13—H13119.4
C11—N2—Cu2111.40 (15)C12—C13—H13119.4
C10—N2—H2A106.1 (19)C15—C14—C13119.9 (2)
C11—N2—H2A109.0 (19)C15—C14—H14120.1
Cu2—N2—H2A108 (2)C13—C14—H14120.1
O1—C1—C2122.5 (2)C14—C15—C16120.9 (2)
O1—C1—C6117.0 (2)C14—C15—H15119.5
C2—C1—C6120.5 (2)C16—C15—H15119.5
C3—C2—C1119.5 (2)C15—C16—C17119.3 (2)
C3—C2—H2120.3C15—C16—H16120.3
C1—C2—H2120.3C17—C16—H16120.3
C2—C3—C4121.0 (2)O2—C17—C16122.2 (2)
C2—C3—H3119.5O2—C17—C12117.6 (2)
C4—C3—H3119.5C16—C17—C12120.2 (2)
O1—C1—C2—C3−178.7 (2)C1—O1—Cu2—N2−84.8 (4)
C6—C1—C2—C31.3 (3)Cu1—O1—Cu2—N259.1 (4)
C1—C2—C3—C40.1 (4)C1—O1—Cu2—Cl1145.23 (16)
C2—C3—C4—C5−0.5 (4)Cu1—O1—Cu2—Cl1−70.93 (6)
C3—C4—C5—C6−0.4 (4)C1—O1—Cu2—Cu1−143.8 (2)
C4—C5—C6—C11.7 (4)C8—N1—Cu2—O2−168.1 (2)
C4—C5—C6—C7−175.4 (2)C7—N1—Cu2—O265.5 (3)
O1—C1—C6—C5177.8 (2)C8—N1—Cu2—O1136.78 (16)
C2—C1—C6—C5−2.1 (3)C7—N1—Cu2—O110.33 (17)
O1—C1—C6—C7−5.0 (3)C8—N1—Cu2—N2−52.22 (17)
C2—C1—C6—C7175.0 (2)C7—N1—Cu2—N2−178.67 (17)
C5—C6—C7—N1−119.7 (2)C8—N1—Cu2—Cl148.06 (16)
C1—C6—C7—N163.2 (3)C7—N1—Cu2—Cl1−78.39 (16)
N1—C8—C9—C10−64.3 (3)C8—N1—Cu2—Cu1131.34 (14)
C8—C9—C10—N263.9 (3)C7—N1—Cu2—Cu14.9 (2)
N2—C11—C12—C13122.6 (2)C10—N2—Cu2—O2−143.06 (16)
N2—C11—C12—C17−61.6 (3)C11—N2—Cu2—O2−19.41 (17)
C17—C12—C13—C14−1.6 (4)C10—N2—Cu2—O1178.2 (3)
C11—C12—C13—C14174.2 (2)C11—N2—Cu2—O1−58.1 (5)
C12—C13—C14—C150.5 (4)C10—N2—Cu2—N151.32 (17)
C13—C14—C15—C160.7 (4)C11—N2—Cu2—N1174.98 (17)
C14—C15—C16—C17−0.7 (4)C10—N2—Cu2—Cl1−52.64 (16)
C15—C16—C17—O2179.0 (2)C11—N2—Cu2—Cl171.02 (16)
C15—C16—C17—C12−0.4 (3)C10—N2—Cu2—Cu1−132.18 (14)
C13—C12—C17—O2−177.9 (2)C11—N2—Cu2—Cu1−8.5 (2)
C11—C12—C17—O26.1 (3)C17—O2—Cu1—O1−139.7 (2)
C13—C12—C17—C161.5 (3)Cu2—O2—Cu1—O120.00 (8)
C11—C12—C17—C16−174.5 (2)C17—O2—Cu1—O1i40.3 (2)
C9—C8—N1—C7−170.9 (2)Cu2—O2—Cu1—O1i−160.00 (8)
C9—C8—N1—Cu261.9 (2)C17—O2—Cu1—Cu2−159.7 (3)
C6—C7—N1—C8176.1 (2)C17—O2—Cu1—Cu2i20.3 (3)
C6—C7—N1—Cu2−56.8 (2)Cu2—O2—Cu1—Cu2i180.0
C9—C10—N2—C11174.7 (2)C1—O1—Cu1—O2118.85 (19)
C9—C10—N2—Cu2−60.8 (2)Cu2—O1—Cu1—O2−19.76 (8)
C12—C11—N2—C10−173.3 (2)C1—O1—Cu1—O2i−61.15 (19)
C12—C11—N2—Cu261.7 (2)Cu2—O1—Cu1—O2i160.24 (8)
C2—C1—O1—Cu10.6 (3)C1—O1—Cu1—Cu2138.6 (2)
C6—C1—O1—Cu1−179.40 (15)C1—O1—Cu1—Cu2i−41.4 (2)
C2—C1—O1—Cu2131.2 (2)Cu2—O1—Cu1—Cu2i180.0
C6—C1—O1—Cu2−48.8 (3)O1—Cu2—Cu1—O2150.01 (11)
C16—C17—O2—Cu115.6 (3)N1—Cu2—Cu1—O2158.32 (12)
C12—C17—O2—Cu1−164.97 (17)N2—Cu2—Cu1—O2−16.86 (11)
C16—C17—O2—Cu2−139.41 (19)Cl1—Cu2—Cu1—O2−106.58 (8)
C12—C17—O2—Cu240.0 (3)O2—Cu2—Cu1—O2i180.0
C17—O2—Cu2—O1142.55 (19)O1—Cu2—Cu1—O2i−29.99 (11)
Cu1—O2—Cu2—O1−19.52 (7)N1—Cu2—Cu1—O2i−21.68 (12)
C17—O2—Cu2—N185.7 (3)N2—Cu2—Cu1—O2i163.14 (11)
Cu1—O2—Cu2—N1−76.4 (3)Cl1—Cu2—Cu1—O2i73.42 (8)
C17—O2—Cu2—N2−30.28 (19)O2—Cu2—Cu1—O1−150.01 (11)
Cu1—O2—Cu2—N2167.64 (8)N1—Cu2—Cu1—O18.31 (11)
C17—O2—Cu2—Cl1−129.39 (18)N2—Cu2—Cu1—O1−166.86 (11)
Cu1—O2—Cu2—Cl168.54 (6)Cl1—Cu2—Cu1—O1103.41 (8)
C17—O2—Cu2—Cu1162.1 (2)O2—Cu2—Cu1—O1i29.99 (11)
C1—O1—Cu2—O2−124.44 (17)O1—Cu2—Cu1—O1i180.0
Cu1—O1—Cu2—O219.40 (7)N1—Cu2—Cu1—O1i−171.69 (11)
C1—O1—Cu2—N142.19 (17)N2—Cu2—Cu1—O1i13.14 (11)
Cu1—O1—Cu2—N1−173.97 (8)Cl1—Cu2—Cu1—O1i−76.59 (8)

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2056).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Ercan, F., Atakol, O., Arıcı, C., Svoboda, I. & Fuess, H. (2002). Acta Cryst. C58, m193–m196. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.
  • Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). Inorg. Chem.30, 4673–4676.
  • Mikuriya, M., Ikenove, S., Nukada, R. & Lim, J. W. (2001). Bull. Chem. Soc. Jpn, 74, 101–102.
  • Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, Y., Gomez, P., Roubeav, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.
  • Song, Y., Gomez, P., Roubeav, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 109–115.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Uhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.
  • Yıldırım, L. T. & Atakol, O. (2002). Cryst. Res. Technol.37, 1352–1359.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography