PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o544.
Published online 2008 February 6. doi:  10.1107/S160053680800295X
PMCID: PMC2960871

9,9′-Dibromo-9,9′-bifluorene

Abstract

9,9′-Dibromo-9,9′-bifluorene, C26H16Br2, has a gauche conformation about the connecting C—C bond [the Br—C—C—Br torsion angle is 59.39 (16)°]. The crystal structure is sustained mainly by an inter­molecular C—Br(...)π inter­action [3.299 (2) and 3.369 (2) Å] towards the bifluorene aromatic-ring-connecting C—C bond and a weak C—H(...)π inter­action (2.86 and 2.99 Å) between the two aromatic rings.

Related literature

For related literature, see: Dougherty et al. (1978 [triangle]); Graebe & Manz (1896 [triangle]); Olah et al. (1981 [triangle]); Solans et al. (1980 [triangle]); Sridevi et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o544-scheme1.jpg

Experimental

Crystal data

  • C26H16Br2
  • M r = 488.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o544-efi4.jpg
  • a = 12.7083 (3) Å
  • b = 12.0480 (2) Å
  • c = 12.7786 (2) Å
  • β = 102.5340 (8)°
  • V = 1909.90 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.25 mm−1
  • T = 103 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQUAB; Jacobson, 1998 [triangle]) T min = 0.351, T max = 0.655
  • 12332 measured reflections
  • 3339 independent reflections
  • 3242 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.070
  • S = 1.12
  • 3339 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Version 1.4.2; Macrae et al., 2006 [triangle]); software used to prepare material for publication: yadokari-XG (Wakita, 2005 [triangle]).

Table 1
Selected interatomic distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800295X/sg2222sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800295X/sg2222Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by Grants-in-Aid for Creative Scientific Research (No. 17GS0207), the 21st Century COE Program B14 (Kyoto University Alliance for Chemistry), and the Global COE Program B09 (International Center for Integrated Research and Advanced Education in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

Comment

Although a number of synthetic works and structural analyses on 9,9'-bifluorene derivertives have been reported, only one report is known for the crystalline structure of 9-halo-9,9'-bifluorene derivertive, that is, 1,1',2,2',3,3',4,4',5,5',6,6',7,7',8,8',9-heptadecachloro- 9,9'-bifluorene (Solans et al., 1980). We have succeeded in the first structural analysis of 9,9'-dihalo-9,9'-bifluorene derivertive, 9,9'-dibromo-9,9'-bifluorene.

The first report on the synthesis of 9,9'-dibromo-9,9'-bifluorene appaered in the 19t h century (Graebe et al., 1896). Its gauche groud-state conformation was revealed by its NMR spectra and the theoretical calculations (Olah et al., 1981).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of Br1—C9—C22—Br2 is 59.39 (16)°, indicating its gauche conformation. Although the bond length of C9—C22 [1.561 (3) Å] is longer than that of non-substituted 9,9'-bifluorene [1.542 (3) Å, Dougherty et al., 1978; 1.539 (3) Å, Sridevi et al., 2006], it is one of the shortest C—C bonds between 9 and 9' positions among the 9(,9')-substituted 9,9'-bifluorenes (1.559–1.724 Å). The shortest intermolecular contacts were found to be C22—Br2···C11i [3.299 (2) Å], C22—Br2···C12i [3.369 (2) Å], and C20—H15···C3ii (2.86 Å) (Fig. 2) [symmetry codes: (i) 3/2 - x, -1/2 + y, 1/2 - z, (ii) 2 - x, -y, 1 - z].

Refinement

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The molecular packing of the title compound. Dashed lines indicate the intermolecular contacts [symmetry codes: (i) 3/2 - x, -1/2 + y, 1/2 - z, (ii) 2 - x, -y, 1 - z].

Crystal data

C26H16Br2Z = 4
Mr = 488.21F000 = 968
Monoclinic, P21/nDx = 1.698 Mg m3
Hall symbol: -P 2ynMo Kα radiation λ = 0.71069 Å
a = 12.7083 (3) Åθ = 3.1–25.0º
b = 12.0480 (2) ŵ = 4.25 mm1
c = 12.7786 (2) ÅT = 103 (2) K
β = 102.5340 (8)ºPrism, colorless
V = 1909.90 (6) Å30.30 × 0.10 × 0.10 mm

Data collection

Rigaku Mercury CCD diffractometer3339 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 103(2) Kθmax = 25.0º
ω scansθmin = 3.1º
Absorption correction: multi-scan(REQUAB; Jacobson, 1998)h = −15→11
Tmin = 0.351, Tmax = 0.655k = −14→14
12332 measured reflectionsl = −11→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027  w = 1/[σ2(Fo2) + (0.0444P)2 + 0.8804P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.48 e Å3
3339 reflectionsΔρmin = −0.97 e Å3
254 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0188 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.84656 (18)0.16573 (18)0.23137 (17)0.0212 (4)
H10.79920.12710.17550.025*
C20.95781 (19)0.15777 (19)0.24391 (19)0.0253 (5)
H20.98670.11290.19590.030*
C31.02751 (18)0.21444 (19)0.3257 (2)0.0261 (5)
H31.10320.20670.33320.031*
C40.98803 (18)0.28206 (18)0.39616 (18)0.0227 (5)
H41.03560.32130.45140.027*
C50.84633 (19)0.43653 (19)0.52326 (17)0.0241 (5)
H50.92060.44590.55510.029*
C60.7676 (2)0.4993 (2)0.55742 (18)0.0270 (5)
H60.78850.55240.61300.032*
C70.6587 (2)0.48479 (18)0.51094 (18)0.0254 (5)
H70.60630.52890.53450.031*
C80.62552 (18)0.40646 (17)0.43032 (17)0.0214 (4)
H80.55120.39610.39930.026*
C90.69082 (16)0.25349 (16)0.31151 (16)0.0165 (4)
C100.80673 (17)0.23199 (16)0.30326 (16)0.0174 (4)
C110.87685 (17)0.29089 (17)0.38378 (17)0.0195 (4)
C120.81287 (17)0.36011 (17)0.44157 (16)0.0189 (4)
C130.70351 (18)0.34400 (17)0.39632 (16)0.0180 (4)
C140.42727 (17)0.20938 (17)0.30227 (18)0.0196 (4)
H90.42460.22160.22830.024*
C150.33643 (18)0.22638 (17)0.34502 (19)0.0223 (5)
H100.27150.25150.29950.027*
C160.33917 (18)0.20728 (18)0.45294 (19)0.0237 (5)
H110.27650.22040.48040.028*
C170.43250 (19)0.16928 (17)0.52080 (18)0.0212 (4)
H120.43400.15460.59420.025*
C180.67213 (19)0.07827 (17)0.63627 (17)0.0224 (5)
H130.62860.08080.68800.027*
C190.7776 (2)0.04043 (17)0.66387 (19)0.0241 (5)
H140.80700.01840.73560.029*
C200.84104 (19)0.03434 (17)0.58756 (18)0.0223 (5)
H150.91310.00810.60800.027*
C210.79998 (17)0.06636 (17)0.48168 (17)0.0195 (4)
H160.84240.06030.42920.023*
C220.63207 (16)0.15126 (16)0.34754 (15)0.0161 (4)
C230.52149 (17)0.17426 (16)0.37060 (16)0.0167 (4)
C240.52399 (17)0.15302 (16)0.47932 (16)0.0178 (4)
C250.63132 (17)0.11255 (16)0.53100 (16)0.0182 (4)
C260.69575 (17)0.10723 (16)0.45519 (16)0.0169 (4)
Br10.611538 (16)0.312530 (17)0.171820 (15)0.02031 (11)
Br20.616445 (16)0.029301 (16)0.241602 (16)0.02030 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0244 (11)0.0232 (10)0.0175 (10)0.0005 (8)0.0074 (9)0.0037 (9)
C20.0270 (12)0.0252 (11)0.0271 (12)0.0070 (9)0.0131 (10)0.0082 (10)
C30.0188 (11)0.0271 (11)0.0334 (13)0.0031 (9)0.0082 (10)0.0119 (10)
C40.0196 (11)0.0224 (10)0.0242 (11)−0.0016 (8)0.0003 (9)0.0085 (9)
C50.0277 (12)0.0251 (11)0.0170 (11)−0.0068 (9)−0.0005 (9)0.0024 (9)
C60.0407 (14)0.0228 (11)0.0182 (11)−0.0077 (10)0.0080 (10)−0.0052 (9)
C70.0356 (13)0.0215 (11)0.0217 (11)−0.0012 (9)0.0117 (10)−0.0037 (9)
C80.0253 (11)0.0184 (10)0.0214 (11)−0.0017 (8)0.0068 (9)−0.0005 (8)
C90.0195 (10)0.0178 (9)0.0114 (9)0.0013 (8)0.0021 (8)0.0004 (8)
C100.0195 (10)0.0175 (10)0.0153 (10)0.0016 (8)0.0044 (8)0.0056 (8)
C110.0222 (11)0.0183 (10)0.0177 (10)−0.0001 (8)0.0040 (9)0.0081 (8)
C120.0245 (11)0.0178 (10)0.0143 (10)−0.0026 (8)0.0037 (8)0.0043 (8)
C130.0249 (11)0.0157 (9)0.0135 (10)−0.0019 (8)0.0046 (8)0.0023 (8)
C140.0215 (11)0.0179 (10)0.0198 (11)−0.0017 (8)0.0051 (9)0.0000 (8)
C150.0192 (11)0.0194 (10)0.0275 (12)0.0002 (8)0.0034 (9)−0.0002 (9)
C160.0236 (11)0.0199 (10)0.0303 (12)−0.0014 (8)0.0116 (10)−0.0023 (9)
C170.0288 (12)0.0175 (10)0.0190 (11)−0.0024 (8)0.0088 (9)−0.0018 (8)
C180.0330 (12)0.0196 (10)0.0146 (10)−0.0012 (9)0.0049 (9)−0.0005 (8)
C190.0323 (13)0.0210 (10)0.0162 (11)−0.0012 (9)−0.0008 (9)0.0021 (8)
C200.0240 (12)0.0174 (10)0.0221 (11)0.0009 (8)−0.0021 (9)0.0031 (8)
C210.0225 (11)0.0153 (10)0.0203 (11)−0.0006 (8)0.0035 (8)0.0007 (8)
C220.0205 (11)0.0154 (9)0.0118 (9)−0.0003 (8)0.0023 (8)−0.0037 (8)
C230.0196 (11)0.0143 (9)0.0164 (10)−0.0027 (7)0.0044 (8)−0.0031 (8)
C240.0231 (11)0.0136 (9)0.0167 (10)−0.0027 (8)0.0044 (8)−0.0032 (8)
C250.0249 (11)0.0125 (9)0.0167 (10)−0.0021 (8)0.0035 (9)−0.0021 (8)
C260.0229 (10)0.0132 (9)0.0141 (10)−0.0021 (8)0.0026 (8)−0.0007 (7)
Br10.02204 (15)0.02365 (15)0.01439 (15)0.00219 (7)0.00212 (9)0.00367 (7)
Br20.02386 (16)0.01924 (15)0.01694 (14)0.00053 (7)0.00257 (9)−0.00527 (7)

Geometric parameters (Å, °)

C1—C21.391 (3)C14—C231.386 (3)
C1—C101.393 (3)C14—C151.395 (3)
C1—H10.9500C14—H90.9500
C2—C31.393 (4)C15—C161.391 (3)
C2—H20.9500C15—H100.9500
C3—C41.387 (3)C16—C171.386 (3)
C3—H30.9500C16—H110.9500
C4—C111.391 (3)C17—C241.392 (3)
C4—H40.9500C17—H120.9500
C5—C121.388 (3)C18—C191.387 (3)
C5—C61.398 (4)C18—C251.395 (3)
C5—H50.9500C18—H130.9500
C6—C71.394 (4)C19—C201.395 (3)
C6—H60.9500C19—H140.9500
C7—C81.393 (3)C20—C211.395 (3)
C7—H70.9500C20—H150.9500
C8—C131.387 (3)C21—C261.385 (3)
C8—H80.9500C21—H160.9500
C9—C131.521 (3)C22—C231.523 (3)
C9—C101.522 (3)C22—C261.531 (3)
C9—C221.561 (3)C22—Br21.9785 (19)
C9—Br11.982 (2)C23—C241.406 (3)
C10—C111.399 (3)C24—C251.464 (3)
C11—C121.470 (3)C25—C261.399 (3)
C12—C131.398 (3)
Br2···C11i3.299 (2)Br2···C12i3.369 (2)
C2—C1—C10118.0 (2)C23—C14—C15118.2 (2)
C2—C1—H1121.0C23—C14—H9120.9
C10—C1—H1121.0C15—C14—H9120.9
C1—C2—C3121.2 (2)C16—C15—C14121.3 (2)
C1—C2—H2119.4C16—C15—H10119.4
C3—C2—H2119.4C14—C15—H10119.4
C4—C3—C2120.9 (2)C17—C16—C15120.6 (2)
C4—C3—H3119.5C17—C16—H11119.7
C2—C3—H3119.5C15—C16—H11119.7
C3—C4—C11118.2 (2)C16—C17—C24118.7 (2)
C3—C4—H4120.9C16—C17—H12120.7
C11—C4—H4120.9C24—C17—H12120.7
C12—C5—C6118.1 (2)C19—C18—C25118.6 (2)
C12—C5—H5121.0C19—C18—H13120.7
C6—C5—H5121.0C25—C18—H13120.7
C7—C6—C5120.8 (2)C18—C19—C20120.8 (2)
C7—C6—H6119.6C18—C19—H14119.6
C5—C6—H6119.6C20—C19—H14119.6
C8—C7—C6120.9 (2)C21—C20—C19120.8 (2)
C8—C7—H7119.6C21—C20—H15119.6
C6—C7—H7119.6C19—C20—H15119.6
C13—C8—C7118.5 (2)C26—C21—C20118.2 (2)
C13—C8—H8120.8C26—C21—H16120.9
C7—C8—H8120.8C20—C21—H16120.9
C13—C9—C10102.52 (16)C23—C22—C26102.66 (16)
C13—C9—C22109.82 (16)C23—C22—C9115.74 (16)
C10—C9—C22114.74 (16)C26—C22—C9110.18 (16)
C13—C9—Br1109.82 (13)C23—C22—Br2107.92 (13)
C10—C9—Br1108.01 (13)C26—C22—Br2108.20 (13)
C22—C9—Br1111.52 (13)C9—C22—Br2111.57 (13)
C1—C10—C11120.7 (2)C14—C23—C24120.61 (19)
C1—C10—C9129.73 (19)C14—C23—C22129.87 (19)
C11—C10—C9109.53 (18)C24—C23—C22109.52 (18)
C4—C11—C10120.9 (2)C17—C24—C23120.6 (2)
C4—C11—C12130.1 (2)C17—C24—C25130.42 (19)
C10—C11—C12108.88 (18)C23—C24—C25108.98 (18)
C5—C12—C13121.2 (2)C18—C25—C26120.2 (2)
C5—C12—C11129.9 (2)C18—C25—C24130.43 (19)
C13—C12—C11108.78 (18)C26—C25—C24109.33 (18)
C8—C13—C12120.6 (2)C21—C26—C25121.31 (19)
C8—C13—C9129.8 (2)C21—C26—C22129.33 (18)
C12—C13—C9109.65 (18)C25—C26—C22109.36 (17)
C10—C1—C2—C3−0.1 (3)C19—C20—C21—C261.8 (3)
C1—C2—C3—C4−1.0 (3)C13—C9—C22—C2357.5 (2)
C2—C3—C4—C110.7 (3)C10—C9—C22—C23172.27 (17)
C12—C5—C6—C70.3 (3)Br1—C9—C22—C23−64.52 (19)
C5—C6—C7—C80.9 (3)C13—C9—C22—C26−58.4 (2)
C6—C7—C8—C13−0.8 (3)C10—C9—C22—C2656.4 (2)
C2—C1—C10—C111.6 (3)Br1—C9—C22—C26179.60 (13)
C2—C1—C10—C9−177.91 (19)C13—C9—C22—Br2−178.64 (13)
C13—C9—C10—C1−172.8 (2)C10—C9—C22—Br2−63.81 (19)
C22—C9—C10—C168.2 (3)Br1—C9—C22—Br259.39 (16)
Br1—C9—C10—C1−56.9 (2)C15—C14—C23—C242.0 (3)
C13—C9—C10—C117.6 (2)C15—C14—C23—C22−178.76 (19)
C22—C9—C10—C11−111.41 (19)C26—C22—C23—C14−175.8 (2)
Br1—C9—C10—C11123.53 (15)C9—C22—C23—C1464.1 (3)
C3—C4—C11—C100.8 (3)Br2—C22—C23—C14−61.7 (2)
C3—C4—C11—C12−176.1 (2)C26—C22—C23—C243.5 (2)
C1—C10—C11—C4−2.0 (3)C9—C22—C23—C24−116.61 (19)
C9—C10—C11—C4177.61 (18)Br2—C22—C23—C24117.60 (15)
C1—C10—C11—C12175.47 (18)C16—C17—C24—C23−0.3 (3)
C9—C10—C11—C12−4.9 (2)C16—C17—C24—C25−178.9 (2)
C6—C5—C12—C13−1.6 (3)C14—C23—C24—C17−1.4 (3)
C6—C5—C12—C11174.0 (2)C22—C23—C24—C17179.19 (18)
C4—C11—C12—C51.0 (4)C14—C23—C24—C25177.42 (17)
C10—C11—C12—C5−176.2 (2)C22—C23—C24—C25−1.9 (2)
C4—C11—C12—C13177.0 (2)C19—C18—C25—C260.8 (3)
C10—C11—C12—C13−0.2 (2)C19—C18—C25—C24178.3 (2)
C7—C8—C13—C12−0.5 (3)C17—C24—C25—C180.4 (4)
C7—C8—C13—C9179.6 (2)C23—C24—C25—C18−178.3 (2)
C5—C12—C13—C81.7 (3)C17—C24—C25—C26178.1 (2)
C11—C12—C13—C8−174.74 (18)C23—C24—C25—C26−0.6 (2)
C5—C12—C13—C9−178.35 (18)C20—C21—C26—C25−2.5 (3)
C11—C12—C13—C95.2 (2)C20—C21—C26—C22177.94 (19)
C10—C9—C13—C8172.2 (2)C18—C25—C26—C211.2 (3)
C22—C9—C13—C8−65.4 (3)C24—C25—C26—C21−176.82 (18)
Br1—C9—C13—C857.6 (3)C18—C25—C26—C22−179.13 (17)
C10—C9—C13—C12−7.7 (2)C24—C25—C26—C222.9 (2)
C22—C9—C13—C12114.67 (19)C23—C22—C26—C21175.8 (2)
Br1—C9—C13—C12−122.35 (15)C9—C22—C26—C21−60.3 (3)
C23—C14—C15—C16−0.9 (3)Br2—C22—C26—C2161.9 (2)
C14—C15—C16—C17−0.8 (3)C23—C22—C26—C25−3.8 (2)
C15—C16—C17—C241.4 (3)C9—C22—C26—C25120.03 (18)
C25—C18—C19—C20−1.4 (3)Br2—C22—C26—C25−117.75 (15)
C18—C19—C20—C210.1 (3)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H15···C2ii0.952.993.760 (3)140
C20—H15···C3ii0.952.863.493 (3)125

Symmetry codes: (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2222).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dougherty, D. A., Llort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1301–1306.
  • Graebe, C. & Manz, B. (1896). Liebigs Ann.290, 238–246.
  • Jacobson, R. (1998). REQAB. Version 1.1. Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Olah, G. A., Field, L. D., Watkins, M. I. & Malhotra, R. (1981). J. Org. Chem.46, 1761–1764.
  • Rigaku (2004). CrystalClear Version 1.3.5 SP2. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Solans, X., Miravitlles, C., Declercq, J. P. & Germain, G. (1980). Acta Cryst. B36, 2677–2683.
  • Sridevi, V. S., Leong, W. K. & Zhu, Y. (2006). Organometallics, 25, 283–288.
  • Wakita, K. (2005). Yadokari-XG http://www.hat.hi-ho.ne.jp/k-wakita/yadokari/index.html

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography