PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o591.
Published online 2008 February 15. doi:  10.1107/S1600536808004145
PMCID: PMC2960870

4-Iodo-2-methyl­aniline

Abstract

In the mol­ecule of the title compound, C7H8IN, the methyl C, I and N atoms lie in the benzene ring plane. In the crystal structure, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis.

Related literature

For related literature, see: Kajigaeshi et al. (1988 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o591-scheme1.jpg

Experimental

Crystal data

  • C7H8IN
  • M r = 233.04
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o591-efi1.jpg
  • a = 5.5910 (11) Å
  • b = 8.9410 (18) Å
  • c = 15.674 (3) Å
  • V = 783.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.00 mm−1
  • T = 294 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.487, T max = 0.670
  • 917 measured reflections
  • 917 independent reflections
  • 737 reflections with I > 2σ(I)
  • R int = 0.012
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.151
  • S = 1.04
  • 917 reflections
  • 82 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.96 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with no Friedel pairs
  • Flack parameter: −0.29 (13)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON-10M (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004145/hk2418sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004145/hk2418Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, (I), contains amino and halogen groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymer, organometallic chemistry etc. (Kajigaeshi et al., 1988). We report herein its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The atoms I, N and C7 lie in the benzene ring plane.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules stacked along the a axis, (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared by the literature method (Kajigaeshi et al., 1988). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in hexane (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x= 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C7H8INDx = 1.976 Mg m3
Mr = 233.04Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.5910 (11) Åθ = 10–14º
b = 8.9410 (18) ŵ = 4.00 mm1
c = 15.674 (3) ÅT = 294 (2) K
V = 783.5 (3) Å3Block, purple
Z = 40.20 × 0.10 × 0.10 mm
F000 = 440

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.012
Radiation source: fine-focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 2.6º
T = 294(2) Kh = 0→6
ω/2θ scansk = 0→11
Absorption correction: ψ scan(North et al., 1968)l = 0→19
Tmin = 0.487, Tmax = 0.6703 standard reflections
917 measured reflections every 120 min
917 independent reflections intensity decay: none
737 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045  w = 1/[σ2(Fo2) + (0.1P)2 + 1.P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.51 e Å3
917 reflectionsΔρmin = −0.96 e Å3
82 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with no Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.29 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.01067 (18)0.20097 (9)0.23728 (5)0.0696 (4)
N0.407 (2)0.6567 (10)−0.0309 (8)0.063 (3)
H0A0.33350.6711−0.07840.076*
H0B0.53260.7081−0.01880.076*
C10.1534 (18)0.3484 (11)0.1464 (7)0.044 (2)
C20.360 (2)0.4273 (12)0.1643 (8)0.053 (3)
H2A0.44250.41370.21520.063*
C30.439 (2)0.5276 (13)0.1030 (7)0.054 (3)
H3A0.57720.58250.11390.064*
C40.322 (2)0.5491 (11)0.0269 (7)0.042 (2)
C50.122 (2)0.4658 (11)0.0088 (7)0.045 (2)
C60.028 (2)0.3671 (11)0.0701 (7)0.051 (3)
H6A−0.11430.31580.06010.062*
C7−0.011 (2)0.4852 (13)−0.0736 (7)0.059 (3)
H7A−0.14800.4207−0.07410.089*
H7B0.09240.4599−0.12040.089*
H7C−0.06150.5873−0.07910.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.0908 (7)0.0662 (5)0.0517 (5)−0.0067 (5)0.0050 (5)0.0104 (3)
N0.061 (6)0.051 (5)0.078 (7)−0.004 (5)0.007 (6)0.012 (5)
C10.048 (6)0.044 (5)0.038 (5)0.002 (5)0.011 (5)−0.001 (4)
C20.056 (7)0.052 (6)0.050 (6)−0.005 (5)−0.005 (6)−0.005 (5)
C30.041 (6)0.055 (7)0.064 (7)−0.001 (5)0.001 (5)−0.010 (6)
C40.040 (6)0.043 (6)0.043 (5)0.006 (4)0.009 (5)−0.002 (4)
C50.058 (7)0.036 (5)0.040 (5)0.005 (5)0.002 (5)0.001 (4)
C60.056 (7)0.044 (5)0.054 (6)−0.005 (6)−0.001 (6)−0.006 (4)
C70.063 (7)0.065 (6)0.050 (5)0.013 (9)−0.009 (8)−0.006 (5)

Geometric parameters (Å, °)

I—C12.099 (10)C4—C51.374 (16)
N—H0A0.8600C4—N1.403 (13)
N—H0B0.8600C5—C61.408 (15)
C1—C21.383 (15)C6—H6A0.9300
C1—C61.397 (15)C7—C51.500 (15)
C2—C31.386 (16)C7—H7A0.9600
C2—H2A0.9300C7—H7B0.9600
C3—C41.375 (16)C7—H7C0.9600
C3—H3A0.9300
C4—N—H0A120.0C3—C4—N119.7 (11)
C4—N—H0B120.0C4—C5—C6120.3 (10)
H0A—N—H0B120.0C4—C5—C7121.2 (10)
C2—C1—C6122.2 (10)C6—C5—C7118.3 (11)
C2—C1—I120.0 (8)C1—C6—C5118.1 (10)
C6—C1—I117.7 (8)C1—C6—H6A121.0
C1—C2—C3117.2 (10)C5—C6—H6A121.0
C1—C2—H2A121.4C5—C7—H7A109.5
C3—C2—H2A121.4C5—C7—H7B109.5
C4—C3—C2122.7 (10)H7A—C7—H7B109.5
C4—C3—H3A118.6C5—C7—H7C109.5
C2—C3—H3A118.6H7A—C7—H7C109.5
C5—C4—C3119.4 (10)H7B—C7—H7C109.5
C5—C4—N120.9 (11)
C6—C1—C2—C30.2 (16)C3—C4—C5—C64.6 (16)
I—C1—C2—C3−177.3 (8)N—C4—C5—C6−174.8 (9)
C2—C1—C6—C52.5 (16)C3—C4—C5—C7−179.8 (10)
I—C1—C6—C5180.0 (7)N—C4—C5—C70.8 (15)
C1—C2—C3—C4−0.5 (17)C4—C5—C6—C1−4.9 (16)
C2—C3—C4—C5−1.8 (17)C7—C5—C6—C1179.4 (10)
C2—C3—C4—N177.5 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N—H0B···Ni0.862.543.397 (15)174

Symmetry codes: (i) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2418).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kajigaeshi, S., Kakinami, T., Yamasaki, H., Fujisaki, S. & Okamoto, T. (1988). Bull. Chem. Soc. Jpn, 61, 600–602.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography