PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m476.
Published online 2008 February 15. doi:  10.1107/S160053680800411X
PMCID: PMC2960861

Diaqua­bis(5-carb­oxy-2-methyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)manganese(II)

Abstract

The title complex, [Mn(C6H5N2O4)2(H2O)2], was obtained by hydro­thermal synthesis. The MnII atom, which lies on an inversion centre, displays a slightly distorted octa­hedral geometry. In the crystal packing, complex mol­ecules are linked by inter­molecular O—H(...)O and N—H(...)O hydrogen bonds to form a three-dimensional supramolecular structure. The title complex is isostructural with the corresponding cadmium(II) complex [Nie, Wen, Wu, Liu & Liu (2007 [triangle]). Acta Cryst. E63, m753–m755].

Related literature

For related literature, see: Liang et al. (2002 [triangle]); Net et al. (1989 [triangle]); Nie et al. (2007 [triangle]); Ying & Mao (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m476-scheme1.jpg

Experimental

Crystal data

  • [Mn(C6H5N2O4)2(H2O)2]
  • M r = 429.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m476-efi1.jpg
  • a = 12.2047 (12) Å
  • b = 9.1607 (9) Å
  • c = 7.3860 (7) Å
  • β = 101.355 (2)°
  • V = 809.62 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 293 (2) K
  • 0.30 × 0.21 × 0.12 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002 [triangle]) T min = 0.778, T max = 0.902
  • 5936 measured reflections
  • 1931 independent reflections
  • 1387 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.096
  • S = 0.96
  • 1931 reflections
  • 132 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800411X/rz2194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800411X/rz2194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The use of multifunctional ligands to construct coordination polymers is of current interest due to their potential ability to generate new solid materials with novel network topologies by deliberate design (Ying & Mao, 2006). In these studies, much attention has been put into coordination polymers containing metals and N-heterocyclic carboxylic acids because they can exhibit abundant structural type and can be potentially used as functional materials (Nie et al., 2007; Liang et al., 2002; Net et al., 1989). In this paper, we report the synthesis and structure of a new manganese(II) complex obtained from 2-methyl-1H-imidazole-4,5-dicarboxylic acid (H3MIA).

The title mononuclear complex molecule contains one manganese(II) ion, two mono-deprotonated H2MIA ligands and two water molecules. The manganese(II) ion lies on an inversion centre and is six-coordinated by two carboxylate oxygen atoms and two nitrogen atoms of the H2MIA ligands, and by the oxygen atoms of two water molecules forming a slightly distorted octahedral geometry (Fig. 1). The Mn—O distances are 2.1433 (19) and 2.2103 (13) Å and the Mn—N distance is 2.2700 (16) Å. In the crystal packing, complex molecules are linked by intermolecular O—H···O and N—H···O hydrogen bonds to form a three-dimensional supermolecular structure (Fig. 2). The complex is isostructural with the corresponding cadmium(II) complex which has been reported recently (Nie et al., 2007).

Experimental

A mixture of manganese(II) acetate (0.5 mmol, 0.120 g) and 2-methyl-1H-imidazole-4,5-dicarboxylic acid in 10 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 150°C for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

The water H atoms were located in a difference Fourier map and refined freely, with Uiso(H) = 1.5 Ueq(O). All other H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.86 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(N) or 1.5 Ueq(C, O)

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) -x, -y + 1, -z.
Fig. 2.
Packing diagram of the title compound viewed along the c axis. Hydrogen atoms are omitted for clarity. The hydrogen bonds are drawn as dotted lines.

Crystal data

[Mn(C6H5N2O4)2(H2O)2]F000 = 438
Mr = 429.21Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3147 reflections
a = 12.2047 (12) Åθ = 2.8–28.2º
b = 9.1607 (9) ŵ = 0.88 mm1
c = 7.3860 (7) ÅT = 293 (2) K
β = 101.355 (2)ºPlate, colourless
V = 809.62 (14) Å30.30 × 0.21 × 0.12 mm
Z = 2

Data collection

Bruker APEX area-detector diffractometer1931 independent reflections
Radiation source: fine-focus sealed tube1387 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 293(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002)h = −16→16
Tmin = 0.778, Tmax = 0.902k = −12→12
5936 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0578P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1931 reflectionsΔρmax = 0.35 e Å3
132 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00000.50000.00000.02937 (16)
N10.18504 (13)0.50974 (16)0.1269 (2)0.0293 (4)
N20.35369 (14)0.52117 (17)0.2952 (3)0.0363 (4)
H2A0.41430.55770.35810.044*
O10.50357 (12)0.30235 (19)0.4426 (3)0.0559 (5)
O20.39335 (12)0.12886 (16)0.3029 (2)0.0484 (4)
H2B0.32980.12260.24150.073*
O30.19549 (11)0.11771 (14)0.1132 (2)0.0352 (4)
O40.06082 (11)0.27347 (14)−0.01036 (19)0.0330 (3)
O5−0.02904 (16)0.4590 (2)0.2723 (3)0.0459 (5)
C10.2586 (2)0.7599 (2)0.2185 (4)0.0549 (7)
H1A0.18750.79220.15030.082*
H1B0.31720.80050.16450.082*
H1C0.26750.79150.34440.082*
C20.26397 (16)0.5981 (2)0.2124 (3)0.0339 (5)
C30.41682 (17)0.2662 (2)0.3431 (3)0.0370 (5)
C40.33359 (15)0.3766 (2)0.2638 (3)0.0309 (5)
C50.22732 (15)0.3710 (2)0.1569 (3)0.0273 (4)
C60.15691 (15)0.2449 (2)0.0818 (3)0.0277 (4)
H5B−0.071 (2)0.499 (2)0.319 (4)0.041 (8)*
H5A0.001 (2)0.397 (3)0.336 (4)0.065 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0254 (2)0.0274 (2)0.0312 (3)0.00137 (17)−0.00438 (17)0.00092 (17)
N10.0265 (9)0.0253 (8)0.0328 (10)−0.0015 (6)−0.0023 (7)−0.0002 (7)
N20.0232 (8)0.0327 (10)0.0468 (12)−0.0040 (7)−0.0081 (7)−0.0053 (8)
O10.0338 (9)0.0507 (10)0.0697 (12)0.0059 (7)−0.0231 (8)−0.0116 (9)
O20.0350 (8)0.0358 (9)0.0650 (11)0.0064 (7)−0.0127 (7)−0.0026 (7)
O30.0305 (7)0.0248 (7)0.0466 (9)−0.0008 (6)−0.0011 (6)−0.0008 (6)
O40.0275 (7)0.0276 (7)0.0379 (9)−0.0018 (6)−0.0080 (6)−0.0034 (6)
O50.0493 (11)0.0499 (10)0.0391 (10)0.0240 (9)0.0099 (8)0.0137 (8)
C10.0500 (15)0.0375 (13)0.071 (2)0.0001 (11)−0.0042 (13)−0.0063 (12)
C20.0283 (10)0.0309 (10)0.0388 (13)−0.0037 (8)−0.0029 (9)−0.0022 (9)
C30.0276 (10)0.0376 (12)0.0415 (14)0.0043 (8)−0.0037 (9)−0.0016 (10)
C40.0244 (10)0.0317 (11)0.0335 (12)−0.0012 (8)−0.0022 (8)−0.0025 (8)
C50.0230 (9)0.0293 (10)0.0275 (11)−0.0010 (7)−0.0003 (7)−0.0006 (8)
C60.0255 (10)0.0276 (10)0.0286 (11)−0.0023 (8)0.0015 (8)−0.0010 (8)

Geometric parameters (Å, °)

Mn1—O5i2.1433 (19)O2—H2B0.8200
Mn1—O52.1433 (19)O3—C61.261 (2)
Mn1—O42.2103 (13)O4—C61.262 (2)
Mn1—O4i2.2103 (13)O5—H5B0.77 (3)
Mn1—N12.2700 (16)O5—H5A0.78 (3)
Mn1—N1i2.2700 (16)C1—C21.485 (3)
N1—C21.320 (2)C1—H1A0.9600
N1—C51.373 (2)C1—H1B0.9600
N2—C21.344 (3)C1—H1C0.9600
N2—C41.358 (2)C3—C41.471 (3)
N2—H2A0.8600C4—C51.380 (3)
O1—C31.210 (2)C5—C61.481 (3)
O2—C31.311 (2)
O5i—Mn1—O5180.00 (10)Mn1—O5—H5A124 (2)
O5i—Mn1—O490.77 (6)H5B—O5—H5A110 (3)
O5—Mn1—O489.23 (6)C2—C1—H1A109.5
O5i—Mn1—O4i89.23 (6)C2—C1—H1B109.5
O5—Mn1—O4i90.77 (6)H1A—C1—H1B109.5
O4—Mn1—O4i180.00 (10)C2—C1—H1C109.5
O5i—Mn1—N192.62 (7)H1A—C1—H1C109.5
O5—Mn1—N187.38 (7)H1B—C1—H1C109.5
O4—Mn1—N174.79 (5)N1—C2—N2110.42 (18)
O4i—Mn1—N1105.21 (5)N1—C2—C1126.44 (19)
O5i—Mn1—N1i87.38 (7)N2—C2—C1123.14 (18)
O5—Mn1—N1i92.62 (7)O1—C3—O2121.74 (19)
O4—Mn1—N1i105.21 (5)O1—C3—C4120.44 (19)
O4i—Mn1—N1i74.79 (5)O2—C3—C4117.82 (17)
N1—Mn1—N1i180.00 (8)N2—C4—C5104.59 (16)
C2—N1—C5105.93 (16)N2—C4—C3121.00 (17)
C2—N1—Mn1142.63 (14)C5—C4—C3134.39 (18)
C5—N1—Mn1110.00 (11)N1—C5—C4109.80 (15)
C2—N2—C4109.25 (16)N1—C5—C6119.32 (16)
C2—N2—H2A125.4C4—C5—C6130.84 (17)
C4—N2—H2A125.4O4—C6—O3124.39 (16)
C3—O2—H2B109.5O4—C6—C5116.68 (16)
C6—O4—Mn1117.32 (11)O3—C6—C5118.93 (16)
Mn1—O5—H5B126 (2)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5B···O3ii0.77 (3)2.01 (3)2.763 (2)168 (3)
O5—H5A···O4iii0.78 (3)1.98 (3)2.760 (2)174 (3)
N2—H2A···O1iv0.862.062.841 (2)151

Symmetry codes: (ii) −x, y+1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2194).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun.5, 366–368.
  • Net, G., Bayon, J. C., Butler, W. M. & Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022–1023.
  • Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.
  • Sheldrick, G. M. (2002). SADABS Version 2.03. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ying, S.-M. & Mao, J.-G. (2006). Cryst. Growth Des.6, 964–968.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography