PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m457.
Published online 2008 February 6. doi:  10.1107/S1600536808003541
PMCID: PMC2960859

Dichlorido[(S)-(1-phenyl­ethyl)(2-pyridyl­meth­yl)amine-κ2 N,N′]zinc(II)

Abstract

In the title compound, [ZnCl2(C14H16N2)], the ZnII atom is coordinated by two N atoms and two Cl atoms in an approximately tetra­hedral arrangement. The dihedral angle between the N—Zn—N and Cl—Zn—Cl planes is 88.06 (8)°. The H atoms on the chiral C atom and the adjacent N atom have an anti conformation.

Related literature

For the synthesis of (S)-2-pyridinal-1-phenyl­ethyl­imine, see: Kang et al. (2006 [triangle]). For related structures, see: Moreau et al. (1999 [triangle]); Mizushima et al. (1999 [triangle]); Himeda et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m457-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C14H16N2)]
  • M r = 348.56
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m457-efi1.jpg
  • a = 9.2342 (6) Å
  • b = 12.5782 (10) Å
  • c = 13.4032 (8) Å
  • V = 1556.78 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.91 mm−1
  • T = 293 (2) K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999 [triangle]) T min = 0.485, T max = 0.564
  • 1705 measured reflections
  • 1659 independent reflections
  • 1530 reflections with I > 2σ(I)
  • R int = 0.009
  • 3 standard reflections frequency: 60 min intensity decay: 0.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.080
  • S = 1.07
  • 1659 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.57 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2 Friedel pairs
  • Flack parameter: 0.018 (19)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEXIII (McArdle, 1995 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003541/cf2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003541/cf2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The ligand, (S)-(1-Phenylethyl)(2-pyridylmethyl)amine, was obtained from reduction of (S)-2-pyridinal-1-phenylethylimine (Kang et al., 2006) with NaBH4 in methanol solution. The ligand was used as co-ligand with another chiral ligand in Ru or Rh complexes as the catalyst for hydrogenation of ketones (Moreau et al., 1999; Mizushima et al., 1999; Himeda et al., 2003). In the crystal structure, the geometry around the ZnII ion is approximately tetrahedral with bonds being formed by two chloride ions and the pyridyl and amine nitrogen atoms of the ligand (Fig. 1). The dihedral angle between the N—Zn—N and Cl—Zn—Cl planes is 88.06 (8)°. The H atoms on the chiral carbon atom and the adjacent nitrogen atom have an anti conformation.

Experimental

NaBH4 (0.33 g, 8.8 mmol) was added slowly to a solution of (S)-2- pyridinal-1-phenylethylimine (1.79 g, 8.5 mmol) in methanol (15 ml). The mixture was stirred overnight, and the solvent was removed by evaporation. The residue obtained was dissolved in 20 ml distilled water and the organic product was extracted with CH2Cl2 (3 x 20 ml) and dried over anhydrous MgSO4. The solvent was evaporated to give a pale yellow oil; 1.41 g (78% yield). 1H-NMR (400 MHz, CDCl3) δ 7.39 (t, 1H, ArH), 7.26 (m, 4H, ArH), 7.17 (m,1H, ArH), 6.90 (t, 2H, ArH), 3.74 (q, J=6.56 Hz, 1H, CH), 3.59 (s, 2H, CH2), 2.45 (s, 3H, PyCH3), 2.19 (br, s, 1H, NH), 1.30 (d, J=6.56 Hz, 3H, CH3). A solution of the ligand (0.96 g, 4.5 mmol) in ethanol (5 ml) was added dropwise to a solution of ZnCl2 (0.61 g, 4.5 mmol) in ethanol (10 ml). The mixture was stirred overnight at room temperature. The solvent was removed to yield a white solid product. Colorless crystals were obtained by slowly diffusing diethyl ether into a saturated solution in acetonitrile (1.36 g, 87%). Anal. Calcd. for C14H16Cl2N2Zn: C, 48.23; H, 4.63; N, 8.04. Found: C, 48.19; H, 4.70, N, 8.01%. 1H-NMR (400 MHz, CD3CN) δ 7.89 (m, 1H, ArH), 7.44 (m, 6H, ArH), 7,16 (d, J=7.79 Hz, 1H, ArH), 4.15 (m, 2H, NH & CH), 3.77 (m, 2H, CH2), 2.78 (s, 3H, PyCH3), 1.70 (d, J=3.24 Hz, CH3).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for C(sp2)H, C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3, and N—H = 0.91 Å, Uiso(H) = 1.2Ueq(N) for NH atoms.

Figures

Fig. 1.
The molecular structure. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

[ZnCl2(C14H16N2)]F000 = 712
Mr = 348.56Dx = 1.487 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.2342 (6) Åθ = 9.9–13.0º
b = 12.5782 (10) ŵ = 1.91 mm1
c = 13.4032 (8) ÅT = 293 (2) K
V = 1556.78 (18) Å3Block, colorless
Z = 40.40 × 0.40 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.009
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 2.2º
T = 293(2) Kh = 0→11
ω/2θ scansk = −14→0
Absorption correction: ψ scan(ABSCALC; McArdle & Daly, 1999)l = 0→15
Tmin = 0.485, Tmax = 0.5643 standard reflections
1705 measured reflections every 60 min
1659 independent reflections intensity decay: 0.2%
1530 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030  w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2097P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.56 e Å3
1659 reflectionsΔρmin = −0.57 e Å3
173 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.018 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.04578 (5)0.93541 (3)0.73653 (3)0.04068 (15)
Cl1−0.15959 (12)0.94695 (8)0.65366 (7)0.0527 (3)
Cl20.14716 (13)1.08625 (8)0.78507 (9)0.0584 (3)
N10.1861 (4)0.8349 (3)0.6668 (2)0.0464 (8)
N20.0324 (3)0.8129 (2)0.8414 (2)0.0339 (6)
H2N−0.04960.77550.82790.041*
C10.2413 (6)0.8436 (4)0.5749 (3)0.0640 (13)
H10.22700.90680.54020.077*
C20.3170 (7)0.7649 (4)0.5300 (4)0.0749 (15)
H20.35250.77360.46560.090*
C30.3405 (6)0.6719 (4)0.5811 (4)0.0653 (13)
H30.39120.61620.55170.078*
C40.2874 (5)0.6627 (3)0.6769 (3)0.0465 (9)
H40.30380.60130.71370.056*
C50.2098 (4)0.7455 (3)0.7174 (3)0.0359 (8)
C60.1564 (4)0.7408 (3)0.8239 (3)0.0378 (8)
H6A0.12760.66850.83940.045*
H6B0.23490.76010.86850.045*
C70.0213 (4)0.8512 (3)0.9465 (3)0.0371 (8)
H70.10600.89600.95940.045*
C8−0.1117 (5)0.9209 (4)0.9566 (3)0.0579 (11)
H8A−0.10470.97950.91100.087*
H8B−0.11800.94741.02360.087*
H8C−0.19670.87990.94150.087*
C90.0207 (4)0.7636 (3)1.0248 (3)0.0367 (8)
C10−0.0433 (4)0.6656 (3)1.0102 (3)0.0439 (8)
H10−0.08360.64940.94850.053*
C11−0.0482 (5)0.5911 (4)1.0863 (3)0.0546 (10)
H11−0.09180.52551.07530.065*
C120.0112 (5)0.6139 (4)1.1780 (3)0.0608 (13)
H120.00740.56411.22930.073*
C130.0767 (5)0.7114 (4)1.1932 (3)0.0581 (12)
H130.11830.72701.25470.070*
C140.0804 (5)0.7855 (4)1.1175 (3)0.0492 (10)
H140.12370.85111.12870.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0526 (3)0.0350 (2)0.0345 (2)0.00634 (18)0.00028 (19)0.00188 (16)
Cl10.0638 (6)0.0493 (5)0.0448 (5)0.0054 (5)−0.0134 (5)−0.0018 (4)
Cl20.0673 (6)0.0459 (5)0.0621 (6)−0.0077 (5)−0.0033 (5)−0.0040 (5)
N10.056 (2)0.0442 (17)0.0388 (16)0.0054 (16)0.0066 (15)0.0006 (14)
N20.0335 (14)0.0380 (16)0.0300 (14)0.0003 (12)−0.0007 (12)−0.0015 (11)
C10.090 (3)0.062 (3)0.040 (2)0.018 (3)0.018 (2)0.015 (2)
C20.107 (4)0.076 (3)0.042 (2)0.022 (3)0.023 (3)0.008 (2)
C30.083 (3)0.061 (3)0.051 (3)0.018 (3)0.016 (3)−0.009 (2)
C40.062 (2)0.042 (2)0.0356 (19)0.0057 (19)0.0047 (18)−0.0014 (16)
C50.0412 (18)0.0338 (16)0.0327 (17)−0.0011 (14)0.0002 (15)−0.0014 (14)
C60.0420 (19)0.0367 (18)0.0347 (18)0.0029 (16)0.0051 (16)−0.0003 (15)
C70.0389 (18)0.0400 (18)0.0324 (17)0.0009 (15)0.0027 (15)−0.0043 (14)
C80.068 (3)0.058 (3)0.048 (2)0.025 (2)0.011 (2)0.006 (2)
C90.0335 (17)0.046 (2)0.0304 (17)0.0053 (15)0.0034 (15)0.0004 (15)
C100.0431 (19)0.047 (2)0.0415 (19)0.0011 (18)0.0057 (18)−0.0013 (16)
C110.060 (2)0.048 (2)0.056 (2)0.006 (2)0.011 (2)0.0083 (19)
C120.065 (3)0.071 (3)0.047 (2)0.027 (2)0.012 (2)0.017 (2)
C130.063 (3)0.079 (3)0.0326 (19)0.015 (3)−0.0036 (19)0.000 (2)
C140.046 (2)0.061 (2)0.040 (2)−0.0008 (19)−0.0015 (18)−0.0048 (19)

Geometric parameters (Å, °)

Zn—N12.037 (3)C6—H6B0.970
Zn—N22.089 (3)C7—C81.516 (5)
Zn—Cl12.2025 (12)C7—C91.522 (5)
Zn—Cl22.2134 (11)C7—H70.980
N1—C51.332 (5)C8—H8A0.960
N1—C11.338 (5)C8—H8B0.960
N2—C61.479 (4)C8—H8C0.960
N2—C71.492 (4)C9—C101.380 (5)
N2—H2N0.910C9—C141.387 (5)
C1—C21.354 (7)C10—C111.386 (6)
C1—H10.930C10—H100.930
C2—C31.373 (7)C11—C121.377 (7)
C2—H20.930C11—H110.930
C3—C41.379 (6)C12—C131.382 (8)
C3—H30.930C12—H120.930
C4—C51.375 (5)C13—C141.378 (6)
C4—H40.930C13—H130.930
C5—C61.511 (5)C14—H140.930
C6—H6A0.970
N1—Zn—N283.58 (12)N2—C6—H6B109.2
N1—Zn—Cl1110.92 (11)C5—C6—H6B109.2
N2—Zn—Cl1109.70 (9)H6A—C6—H6B107.9
N1—Zn—Cl2113.45 (11)N2—C7—C8109.1 (3)
N2—Zn—Cl2117.35 (9)N2—C7—C9114.7 (3)
Cl1—Zn—Cl2117.13 (4)C8—C7—C9110.8 (3)
C5—N1—C1118.4 (4)N2—C7—H7107.3
C5—N1—Zn113.3 (2)C8—C7—H7107.3
C1—N1—Zn127.9 (3)C9—C7—H7107.3
C6—N2—C7113.6 (3)C7—C8—H8A109.5
C6—N2—Zn107.5 (2)C7—C8—H8B109.5
C7—N2—Zn113.7 (2)H8A—C8—H8B109.5
C6—N2—H2N107.3C7—C8—H8C109.5
C7—N2—H2N107.3H8A—C8—H8C109.5
Zn—N2—H2N107.3H8B—C8—H8C109.5
N1—C1—C2123.1 (4)C10—C9—C14118.3 (4)
N1—C1—H1118.4C10—C9—C7123.4 (3)
C2—C1—H1118.4C14—C9—C7118.2 (4)
C1—C2—C3118.9 (4)C9—C10—C11120.9 (4)
C1—C2—H2120.5C9—C10—H10119.5
C3—C2—H2120.5C11—C10—H10119.5
C2—C3—C4118.6 (4)C12—C11—C10120.2 (4)
C2—C3—H3120.7C12—C11—H11119.9
C4—C3—H3120.7C10—C11—H11119.9
C3—C4—C5119.4 (4)C11—C12—C13119.4 (4)
C3—C4—H4120.3C11—C12—H12120.3
C5—C4—H4120.3C13—C12—H12120.3
N1—C5—C4121.6 (3)C14—C13—C12120.2 (4)
N1—C5—C6117.4 (3)C14—C13—H13119.9
C4—C5—C6120.9 (3)C12—C13—H13119.9
N2—C6—C5112.2 (3)C13—C14—C9121.0 (4)
N2—C6—H6A109.2C13—C14—H14119.5
C5—C6—H6A109.2C9—C14—H14119.5
N2—Zn—N1—C5−2.7 (3)C3—C4—C5—C6−176.8 (4)
Cl1—Zn—N1—C5−111.4 (3)C7—N2—C6—C5−152.2 (3)
Cl2—Zn—N1—C5114.3 (3)Zn—N2—C6—C5−25.6 (3)
N2—Zn—N1—C1169.4 (5)N1—C5—C6—N226.0 (4)
Cl1—Zn—N1—C160.7 (5)C4—C5—C6—N2−157.8 (3)
Cl2—Zn—N1—C1−73.5 (5)C6—N2—C7—C8−178.0 (3)
N1—Zn—N2—C615.9 (2)Zn—N2—C7—C858.7 (4)
Cl1—Zn—N2—C6125.8 (2)C6—N2—C7—C9−53.2 (4)
Cl2—Zn—N2—C6−97.2 (2)Zn—N2—C7—C9−176.4 (2)
N1—Zn—N2—C7142.5 (3)N2—C7—C9—C10−34.9 (5)
Cl1—Zn—N2—C7−107.6 (2)C8—C7—C9—C1089.0 (4)
Cl2—Zn—N2—C729.3 (3)N2—C7—C9—C14148.8 (4)
C5—N1—C1—C21.7 (8)C8—C7—C9—C14−87.2 (4)
Zn—N1—C1—C2−170.0 (4)C14—C9—C10—C110.2 (6)
N1—C1—C2—C3−0.9 (10)C7—C9—C10—C11−176.1 (4)
C1—C2—C3—C4−0.8 (9)C9—C10—C11—C12−0.1 (6)
C2—C3—C4—C51.6 (8)C10—C11—C12—C13−0.5 (7)
C1—N1—C5—C4−0.8 (6)C11—C12—C13—C140.9 (7)
Zn—N1—C5—C4172.1 (3)C12—C13—C14—C9−0.8 (7)
C1—N1—C5—C6175.4 (4)C10—C9—C14—C130.2 (6)
Zn—N1—C5—C6−11.7 (4)C7—C9—C14—C13176.7 (4)
C3—C4—C5—N1−0.8 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2180).

References

  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H. & Kasuga, K. (2003). J. Mol. Catal. A: Chem.195, 95–100.
  • Kang, B., Kim, M., Lee, J., Do, Y. & Chang, S. (2006). J. Org. Chem.71, 6721–6727. [PubMed]
  • McArdle, P. (1995). J. Appl. Cryst.28, 65.
  • McArdle, P. (1999). XCAD National University of Ireland, Galway, Ireland.
  • McArdle, P. & Daly, P. (1999). ABSCALC National University of Ireland, Galway, Ireland.
  • Mizushima, E., Ohi, H., Yamaguchi, M. & Yamagishi, T. J. (1999). J. Mol. Catal. A: Chem.149, 43–49.
  • Moreau, C., Frost, C. G. & Murrer, B. (1999). Tetrahedron Lett.40, 5617–5620.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography