PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m455–m456.
Published online 2008 February 6. doi:  10.1107/S1600536808003760
PMCID: PMC2960857

Dichlorido(9-methyl­adenine-κN 7)(η5-penta­methyl­cyclo­penta­dien­yl)iridium(III) dichloromethane solvate

Abstract

In the title complex, [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 or [Ir(η5-C5Me5)Cl2(9-MeAde-κN 7)]·CH2Cl2 (9-MeAde = 9-methyl­adenine), the coordination geometry of the IrIII atom approximates to a three-legged piano stool. The 9-methyl­adenine ligand is coordinated in a monodentate fashion to the Ir centre through its N-7 atom. The crystal structure contains centrosymmetric pairs of mol­ecules, inter­acting through two N—H(...)N hydrogen bonds. An intra­molecular N—H(...)Cl hydrogen bond is formed between the H atom of an NH2 group and a chlorido ligand. Further short intra- and inter­molecular C—H(...)Cl contacts are observed.

Related literature

For background information, see: Lippert (2000 [triangle]); Houlton (2002 [triangle]). For related literature, see: Zhu et al. (2002 [triangle]); Gaballa et al. (2004 [triangle], 2008 [triangle]); Aakeröy et al. (1999 [triangle]); Baldovino-Pantaleon et al. (2007 [triangle]); Davies et al. (2003 [triangle]); Huang et al. (1998 [triangle]); Jeffrey & Saenger (1994 [triangle]); Kistenmacher & Rossi (1977 [triangle]); McMullan et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m455-scheme1.jpg

Experimental

Crystal data

  • [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2
  • M r = 632.41
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m455-efi1.jpg
  • a = 7.294 (2) Å
  • b = 11.8698 (14) Å
  • c = 13.649 (3) Å
  • α = 71.338 (15)°
  • β = 83.83 (3)°
  • γ = 78.003 (14)°
  • V = 1094.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.60 mm−1
  • T = 200 (2) K
  • 0.19 × 0.15 × 0.13 mm

Data collection

  • Stoe STADI-4 diffractometer
  • Absorption correction: multi-scan (X-RED; Stoe & Cie, 2002 [triangle]) T min = 0.32, T max = 0.43
  • 4132 measured reflections
  • 3807 independent reflections
  • 3246 reflections with I > 2σ(I)
  • R int = 0.068
  • 1 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.125
  • S = 1.13
  • 3807 reflections
  • 250 parameters
  • H-atom parameters constrained
  • Δρmax = 2.87 e Å−3
  • Δρmin = −3.41 e Å−3

Data collection: STADI4 (Stoe & Cie, 2002 [triangle]); cell refinement: STADI4 (Stoe & Cie, 2002 [triangle]); data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003760/fj2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003760/fj2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft for financial support.

supplementary crystallographic information

Comment

Due to their importance in chemotherapy, nucleobase complexes of platinum and other transition metals attract attention. We are interested in syntheses and characterization of such complexes having, especially, metals in higher oxidation states (Zhu et al., 2002; Gaballa et al., 2004; Gaballa et al., 2007). The iridium(III) title complex [IrCl25-C5Me5)(9-MeAde-κN7)].CH2Cl2 (see Figure 1) crystallizes in the triclinic space group P1. Crystals contain centrosymmetric dinuclear molecules (see Figure 2). The coordination geometry of the iridium center approximates a three-legged piano stool, the irdium atom being directly bound to two chloro ligands, to a N7 coordinated 9-methyladenine ligand and to a η5-pentamethylcyclopentadienyl ligand. The 9-MeAde ligand is planar in good approximation, the greatest deviation from the mean plane was found for the exocyclic N6 atom (0.06 (1) Å). The Ir–N7 and Ir–Cl1/Ir–Cl2 bonds are as long as those in the complex [IrCl25-C5Me5)(NH2Ph-κN)] (2.152 (8) versus. 2.152 Å and 2.402 (3)/2.423 (3) versus. 2.394/2.419 Å) (Davies et al., 2003).

The dimers are formed through two N6–H6A···N1' hydrogen bonds (N6···N1' 3.01 (1) Å; H6A···N1' 2.14 Å; N6–H6A···N1' 170°). Furthermore, the other hydrogen atom of the exocyclic amino group acts as hydrogen donor in a N6–H6B···Cl2 hydrogen bond (N6···Cl2 3.17 (1) Å; H6B···Cl2 2.35 Å; N6–H6B···Cl2 155°). The structural parameters of these two hydrogen bonds are in accord with analogous hydrogen bonds in nucleobases and in chloro metal complexes, respectively (Jeffrey & Saenger, 1994; Baldovino-Pantaleon et al., 2007). Noteworthy, in crystals of 9-methyladenine two N6–H6A···N1' and N6–H6B···N7' hydrogen bonds link molecules in ribbons (Kistenmacher & Rossi, 1977; McMullan et al., 1980). Furthermore, short intra- and intermolecular C–H···Cl contacts (see Table) indicate stabilizing interactions (Huang et al., 1998; Aakeröy et al., 1999).

Experimental

Reaction of [{IrCl25-C5Me5)}2] with 9-methyladenine (9-MeAde) in 1: 2 ratio in methylene chloride resulted in the formation of yellow crystals of the title complex in 67% yield. 1H NMR (CD2Cl2, 200 MHz): δ 1.49 (s, 15H, C5(CH3)5), 3.88 (s, 3H, NCH3), 8.41 (s, br, 1H, H8), 8.64 (s, br, 1H, H2).

Refinement

All non-H atoms were refined with anisotropic thermal parameters. H atoms were included in the model in calculated positions using the riding model, with their isotropic displacement parameter tied to 1.2 times that of the bonded atom.

Figures

Fig. 1.
Structure of the asymmetric unit of the title complex [IrCl2(η5-C5Me5)(9-MeAde-κN7)].CH2Cl2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Structure of the dinuclear complex [{IrCl2(η5-C5Me5)(9-MeAde-κN7)}2] in crystals of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The numbering ...

Crystal data

[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2Z = 2
Mr = 632.41F(000) = 612
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.294 (2) ÅCell parameters from 32 reflections
b = 11.8698 (14) Åθ = 6.5–18.9°
c = 13.649 (3) ŵ = 6.60 mm1
α = 71.338 (15)°T = 200 K
β = 83.83 (3)°Block, colourless
γ = 78.003 (14)°0.19 × 0.15 × 0.13 mm
V = 1094.0 (4) Å3

Data collection

Stoe STADI-4 diffractometer3246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
graphiteθmax = 25.0°, θmin = 1.6°
profile data from ω/2θ scansh = −8→8
Absorption correction: multi-scan (X-RED; Stoe & Cie, 2002)k = −13→14
Tmin = 0.32, Tmax = 0.43l = −8→16
4132 measured reflections1 standard reflections every 60 min
3807 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 2.87 e Å3
0 restraintsΔρmin = −3.41 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.9961 (15)−0.0640 (10)0.7978 (9)0.030 (2)
H21.0628−0.14500.81650.036*
C40.8452 (14)0.0945 (9)0.6832 (8)0.023 (2)
C50.7931 (13)0.1571 (8)0.7549 (7)0.019 (2)
C60.8617 (15)0.0991 (9)0.8549 (8)0.026 (2)
C80.6814 (13)0.2726 (9)0.6092 (8)0.020 (2)
H80.61980.34020.55730.024*
C90.7869 (16)0.1435 (10)0.4929 (8)0.029 (2)
H9A0.71370.21090.44160.035*
H9B0.73750.06960.50340.035*
H9C0.91850.13180.46820.035*
C100.2376 (14)0.3257 (10)0.7454 (8)0.028 (2)
C110.3065 (16)0.2573 (10)0.8485 (9)0.030 (3)
C120.2955 (15)0.3417 (11)0.9036 (8)0.031 (3)
C130.2174 (16)0.4615 (11)0.8368 (10)0.037 (3)
C140.1805 (14)0.4482 (10)0.7419 (9)0.030 (3)
C150.213 (2)0.2713 (14)0.6624 (11)0.053 (4)
H15A0.24820.32420.59450.064*
H15B0.08210.26320.66350.064*
H15C0.29410.19140.67540.064*
C160.3688 (18)0.1234 (10)0.8885 (11)0.045 (3)
H16A0.47890.10480.93010.054*
H16B0.40140.09070.83010.054*
H16C0.26710.08690.93150.054*
C170.3513 (19)0.3108 (14)1.0118 (9)0.050 (4)
H17A0.40300.37721.01970.060*
H17B0.44650.23661.02820.060*
H17C0.24120.29821.05910.060*
C180.180 (2)0.5756 (12)0.8658 (13)0.060 (4)
H18A0.21260.64200.80670.072*
H18B0.25550.56510.92430.072*
H18C0.04640.59460.88550.072*
C190.0889 (17)0.5477 (13)0.6515 (12)0.056 (4)
H19A0.08300.62630.66210.068*
H19B−0.03830.53610.64620.068*
H19C0.16270.54540.58760.068*
C200.331 (2)0.2130 (12)0.3148 (10)0.045 (3)
H20A0.21670.21110.28260.053*
H20B0.35330.29720.29030.053*
Cl10.5584 (4)0.5480 (2)0.6167 (2)0.0268 (5)
Cl20.7133 (4)0.4366 (2)0.8520 (2)0.0289 (6)
Cl30.2938 (5)0.1691 (3)0.4491 (3)0.0505 (8)
Cl40.5213 (6)0.1194 (4)0.2750 (4)0.0745 (12)
N10.9631 (12)−0.0139 (8)0.8738 (7)0.027 (2)
N30.9494 (13)−0.0174 (7)0.6998 (7)0.029 (2)
N60.8322 (13)0.1512 (8)0.9311 (7)0.031 (2)
H6A0.87890.11150.99210.037*
H6B0.76630.22490.91990.037*
N70.6850 (11)0.2692 (7)0.7069 (6)0.0188 (17)
N90.7732 (12)0.1709 (8)0.5912 (6)0.0233 (18)
Ir0.47641 (5)0.39087 (3)0.76639 (3)0.01833 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.030 (6)0.026 (6)0.033 (6)0.002 (5)−0.006 (5)−0.011 (5)
C40.025 (5)0.024 (5)0.026 (5)−0.008 (4)−0.003 (4)−0.011 (4)
C50.022 (5)0.017 (5)0.017 (5)−0.004 (4)0.001 (4)−0.006 (4)
C60.028 (6)0.023 (5)0.021 (5)0.002 (4)−0.003 (4)−0.003 (4)
C80.014 (5)0.017 (5)0.025 (5)0.002 (4)−0.004 (4)−0.004 (4)
C90.043 (7)0.025 (6)0.022 (5)−0.009 (5)0.006 (5)−0.011 (4)
C100.018 (5)0.040 (7)0.029 (6)−0.016 (5)0.005 (4)−0.011 (5)
C110.033 (6)0.025 (6)0.035 (6)−0.017 (5)0.016 (5)−0.009 (5)
C120.026 (6)0.043 (7)0.025 (6)−0.013 (5)0.010 (4)−0.012 (5)
C130.023 (6)0.030 (6)0.053 (8)0.005 (5)0.012 (5)−0.015 (6)
C140.018 (5)0.028 (6)0.037 (6)0.006 (4)−0.002 (4)−0.004 (5)
C150.055 (9)0.069 (10)0.053 (9)−0.046 (8)0.006 (7)−0.026 (8)
C160.048 (8)0.015 (6)0.064 (9)−0.014 (5)0.005 (6)0.001 (6)
C170.041 (7)0.074 (10)0.029 (7)−0.006 (7)0.006 (6)−0.013 (7)
C180.054 (9)0.041 (8)0.092 (12)0.003 (7)0.027 (8)−0.047 (8)
C190.019 (6)0.057 (9)0.068 (10)−0.001 (6)0.000 (6)0.012 (7)
C200.054 (8)0.037 (7)0.047 (8)−0.007 (6)−0.001 (6)−0.020 (6)
Cl10.0323 (14)0.0227 (13)0.0256 (13)−0.0081 (10)−0.0010 (10)−0.0057 (10)
Cl20.0349 (14)0.0274 (13)0.0295 (14)−0.0074 (11)−0.0051 (11)−0.0136 (11)
Cl30.055 (2)0.0467 (19)0.058 (2)−0.0206 (16)0.0060 (16)−0.0227 (16)
Cl40.071 (3)0.081 (3)0.072 (3)0.008 (2)0.009 (2)−0.042 (2)
N10.028 (5)0.018 (4)0.033 (5)0.000 (4)−0.002 (4)−0.008 (4)
N30.032 (5)0.015 (4)0.040 (6)0.001 (4)0.000 (4)−0.013 (4)
N60.043 (6)0.023 (5)0.023 (5)0.011 (4)−0.009 (4)−0.011 (4)
N70.021 (4)0.010 (4)0.020 (4)0.004 (3)−0.002 (3)−0.001 (3)
N90.029 (5)0.022 (4)0.019 (4)−0.006 (4)0.005 (3)−0.008 (4)
Ir0.0201 (2)0.0154 (2)0.0201 (2)−0.00199 (14)0.00201 (14)−0.00814 (15)

Geometric parameters (Å, °)

C2—N31.325 (14)C13—C181.494 (17)
C2—N11.331 (14)C13—Ir2.159 (11)
C2—H20.9500C14—C191.510 (16)
C4—N31.348 (13)C14—Ir2.153 (10)
C4—N91.375 (13)C15—H15A0.9800
C4—C51.386 (14)C15—H15B0.9800
C5—N71.392 (12)C15—H15C0.9800
C5—C61.410 (14)C16—H16A0.9800
C6—N11.349 (13)C16—H16B0.9800
C6—N61.349 (14)C16—H16C0.9800
C8—N71.325 (13)C17—H17A0.9800
C8—N91.335 (13)C17—H17B0.9800
C8—H80.9500C17—H17C0.9800
C9—N91.467 (13)C18—H18A0.9800
C9—H9A0.9800C18—H18B0.9800
C9—H9B0.9800C18—H18C0.9800
C9—H9C0.9800C19—H19A0.9800
C10—C141.414 (16)C19—H19B0.9800
C10—C111.463 (16)C19—H19C0.9800
C10—C151.514 (17)C20—Cl41.743 (13)
C10—Ir2.127 (10)C20—Cl31.745 (13)
C11—C121.419 (16)C20—H20A0.9900
C11—C161.493 (15)C20—H20B0.9900
C11—Ir2.165 (10)Cl1—Ir2.402 (3)
C12—C131.458 (16)Cl2—Ir2.423 (3)
C12—C171.484 (16)N6—H6A0.8800
C12—Ir2.164 (10)N6—H6B0.8800
C13—C141.413 (17)N7—Ir2.152 (8)
N3—C2—N1129.5 (10)C12—C17—H17A109.5
N3—C2—H2115.3C12—C17—H17B109.5
N1—C2—H2115.3H17A—C17—H17B109.5
N3—C4—N9127.0 (9)C12—C17—H17C109.5
N3—C4—C5127.0 (10)H17A—C17—H17C109.5
N9—C4—C5106.0 (9)H17B—C17—H17C109.5
C4—C5—N7108.9 (8)C13—C18—H18A109.5
C4—C5—C6116.4 (9)C13—C18—H18B109.5
N7—C5—C6134.6 (9)H18A—C18—H18B109.5
N1—C6—N6119.0 (9)C13—C18—H18C109.5
N1—C6—C5117.6 (9)H18A—C18—H18C109.5
N6—C6—C5123.4 (9)H18B—C18—H18C109.5
N7—C8—N9112.9 (8)C14—C19—H19A109.5
N7—C8—H8123.5C14—C19—H19B109.5
N9—C8—H8123.5H19A—C19—H19B109.5
N9—C9—H9A109.5C14—C19—H19C109.5
N9—C9—H9B109.5H19A—C19—H19C109.5
H9A—C9—H9B109.5H19B—C19—H19C109.5
N9—C9—H9C109.5Cl4—C20—Cl3112.3 (8)
H9A—C9—H9C109.5Cl4—C20—H20A109.2
H9B—C9—H9C109.5Cl3—C20—H20A109.2
C14—C10—C11107.9 (10)Cl4—C20—H20B109.2
C14—C10—C15126.5 (11)Cl3—C20—H20B109.2
C11—C10—C15125.3 (11)H20A—C20—H20B107.9
C14—C10—Ir71.7 (6)C2—N1—C6119.0 (9)
C11—C10—Ir71.5 (6)C2—N3—C4110.4 (9)
C15—C10—Ir127.3 (8)C6—N6—H6A120.0
C12—C11—C10107.0 (10)C6—N6—H6B120.0
C12—C11—C16126.9 (11)H6A—N6—H6B120.0
C10—C11—C16126.1 (11)C8—N7—C5104.9 (8)
C12—C11—Ir70.8 (6)C8—N7—Ir119.3 (6)
C10—C11—Ir68.7 (5)C5—N7—Ir132.2 (6)
C16—C11—Ir127.4 (8)C8—N9—C4107.2 (8)
C11—C12—C13108.4 (10)C8—N9—C9126.4 (9)
C11—C12—C17125.0 (12)C4—N9—C9126.3 (9)
C13—C12—C17126.6 (12)C10—Ir—N797.3 (4)
C11—C12—Ir70.9 (6)C10—Ir—C1438.6 (4)
C13—C12—Ir70.1 (6)N7—Ir—C14130.7 (4)
C17—C12—Ir125.7 (8)C10—Ir—C1365.1 (5)
C14—C13—C12107.3 (10)N7—Ir—C13160.2 (4)
C14—C13—C18127.1 (12)C14—Ir—C1338.3 (5)
C12—C13—C18125.6 (13)C10—Ir—C1265.4 (4)
C14—C13—Ir70.6 (6)N7—Ir—C12126.5 (4)
C12—C13—Ir70.4 (6)C14—Ir—C1264.8 (4)
C18—C13—Ir125.4 (9)C13—Ir—C1239.4 (4)
C13—C14—C10109.4 (10)C10—Ir—C1139.9 (4)
C13—C14—C19125.8 (12)N7—Ir—C1195.5 (4)
C10—C14—C19124.7 (12)C14—Ir—C1165.2 (4)
C13—C14—Ir71.1 (6)C13—Ir—C1165.3 (4)
C10—C14—Ir69.7 (6)C12—Ir—C1138.3 (4)
C19—C14—Ir126.8 (8)C10—Ir—Cl1112.7 (3)
C10—C15—H15A109.5N7—Ir—Cl186.0 (2)
C10—C15—H15B109.5C14—Ir—Cl193.1 (3)
H15A—C15—H15B109.5C13—Ir—Cl1108.6 (3)
C10—C15—H15C109.5C12—Ir—Cl1147.4 (3)
H15A—C15—H15C109.5C11—Ir—Cl1152.5 (3)
H15B—C15—H15C109.5C10—Ir—Cl2160.2 (3)
C11—C16—H16A109.5N7—Ir—Cl291.0 (2)
C11—C16—H16B109.5C14—Ir—Cl2138.2 (3)
H16A—C16—H16B109.5C13—Ir—Cl2103.0 (4)
C11—C16—H16C109.5C12—Ir—Cl295.2 (3)
H16A—C16—H16C109.5C11—Ir—Cl2121.6 (3)
H16B—C16—H16C109.5Cl1—Ir—Cl285.72 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H6A···N1i0.882.143.007 (13)170.
N6—H6B···Cl20.882.353.168 (10)155.
C8—H8···Cl10.952.773.237 (11)111.
C8—H8···Cl1ii0.952.653.537 (11)156.
C9—H9B···Cl3iii0.982.753.697 (13)163.
C20—H20B···Cl1ii0.992.753.519 (15)135.

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2096).

References

  • Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Palinko, I. (1999). New J. Chem. pp. 145–152.
  • Baldovino-Pantaleon, O., Morales-Morales, D., Hernandez-Ortega, S., Toscano, R. A. & Valdes-Martinez, J. (2007). Cryst. Growth Des. 7, 117–123.
  • Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  • Davies, D. L., Al-Duaij, O., Fawcett, J., Giardiello, M., Hilton, S. T. & Russell, D. R. (2003). Dalton Trans. pp. 4132–4138.
  • Gaballa, A., Schmidt, H., Hempel, G., Reichert, D., Wagner, C., Rusanov, E. & Steinborn, D. (2004). J. Inorg. Biochem.98, 439–446. [PubMed]
  • Gaballa, A. S., Schmidt, H., Wagner, C. & Steinborn, D. (2008). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.023.
  • Houlton, A. (2002). Adv. Inorg. Chem.53, 87–158.
  • Huang, L.-Y., Aulwurm, U. R., Heinemann, F. W., Knoch, F. & Kisch, H. (1998). Chem. Eur. J.4, 1641–1646.
  • Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures Berlin: Springer-Verlag.
  • Kistenmacher, T. J. & Rossi, M. (1977). Acta Cryst. B33, 253–256.
  • Lippert, B. (2000). Coord. Chem. Rev.200202, 487–516.
  • McMullan, R. K., Benci, P. & Craven, B. M. (1980). Acta Cryst. B36, 1424–1430.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). STADI4 andX-RED Stoe & Cie GmbH, Darmstadt, Germany.
  • Zhu, X., Rusanov, E., Kluge, R., Schmidt, H. & Steinborn, D. (2002). Inorg. Chem.41, 2667–2671. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography