PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): i18–i19.
Published online 2008 February 6. doi:  10.1107/S1600536808003425
PMCID: PMC2960854

The solid solution Na0.39(NH4)1.61SO4·Te(OH)6

Abstract

The title compound, sodium ammonium sulfate–telluric acid (1/1), Na0.39(NH4)1.61SO4·Te(OH)6, is isostructural with other solid solutions in the series M 1−x(NH4)xSO4·Te(OH)6, where ammonium is partially replaced with an alkali metal (M = K, Rb or Cs). The structure is composed of planes of Te(OH)6 octa­hedra alternating with planes of SO4 tetra­hedra. The Na+/NH4 + cations are statistically distributed over the same position and are located between the planes. The structure is stabilized by O—H(...)O and N—H(...)O hydrogen bonds between the telluric acid adducts and the O atoms of sulfate groups, and between the ammonium cations and O atoms, respectively. Both Te atoms lie on centres of symmetry.

Related literature

For the sodium end-member of the solid solution series Na1−x(NH4)xSO4·Te(OH)6, see: Zilber et al. (1980 [triangle]). For the ammonium end-member of the same series, see: Zilber et al. (1981 [triangle]). For other solid solutions in the system M 1−x(NH4)xSO4·Te(OH)6, where ammonium is partially replaced by an alkali metal, see: Dammak et al. (2005 [triangle]) for M = Cs; Ktari et al. (2002 [triangle]) for M = Rb; and Ktari et al. (2004 [triangle]) for M = K. For related literature, see: Prince (1982 [triangle]); Watkin (1994 [triangle]).

Experimental

Crystal data

  • Na0.39(NH4)1.61SO4·Te(OH)6
  • M r = 357.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i18-efi1.jpg
  • a = 13.690 (1) Å
  • b = 6.592 (1) Å
  • c = 11.345 (1) Å
  • β = 106.58 (1)°
  • V = 981.26 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.30 mm−1
  • T = 298 K
  • 0.15 × 0.14 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2007 [triangle]) T min = 0.615, T max = 0.719
  • 919 measured reflections
  • 849 independent reflections
  • 638 reflections with I > 3σ(I)
  • R int = 0.000

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.043
  • S = 0.93
  • 638 reflections
  • 104 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −1.15 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond and short contact geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003425/wm2171sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003425/wm2171Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the French Ministry of Research and New Technologies and the French/Tunisian Twin Committee for University Collaboration.

supplementary crystallographic information

Comment

The studies of a partial cationic substitution on symmetry and physical properties of solid solutions in the series M1 - x(NH4)xSO4.Te(OH)6 (M = K, Rb and Cs) have been reported in previous communications, viz. for K0.84(NH4)1.16SO4.Te(OH)6 (Ktari et al.., 2004), Rb1.12(NH4)0.88SO4.Te(OH)6 (Ktari et al.., 2002), and Cs0.86(NH4)1.14SO4.Te(OH)6 (Dammak et al.., 2005). To continue these studies, we have now investigated the solid solution Na0.39(NH4)1.61SO4.Te(OH)6. This compound is isostructural with the aforementioned phases.

Fig. 1 shows a projection of the structure on the ab plane. The structure can be regarded as being built up of planes of Te(OH)6 octahedra (at x = 0 and 1/2) alternating with planes of SO4 tetrahedra (at x≈ 1/4). The statistically disordered Na+/NH4+ cations are intercalated between these planes. Both Te atoms are situated on inversion centres and exhibit similar Te(OH)6 octahedra, with Te—O distances and O—Te—O angles ranging from 1.903 (6) to 1.916 (3) Å, and from 87.6 (2) to 92.4 (2)°, respectively (Fig. 2). In the sodium end-member Na2SO4.Te(OH)6 (Zilber et al., 1980), the Te—O distances range from 1.879 (4) to 1.932 (3) Å, whereas in the ammonium end-member (NH4)2SO4.Te(OH)6 (Zilber et al., 1981) they vary from 1.874 (3) to 1.944 (3) Å. The SO4 tetrahedra in the title compound are quite regular with S—O distances between 1.460 (6) and 1.486 (6)Å and O—S—O angles between 108.6 (3) and 110.6 (3)°. In the sodium end-member, the S—O distances are nearly the same (1.461 (5) to 1.497 (5) Å), whilst in the ammonium end-member they spread between 1.373 (11) and 1.565 (8) Å. In the mixed solution the Na/N atoms are 9-coordinate with (Na/N)—O bonds ranging from 2.873 (4) to 3.278 (5)Å for Na1/N1 and from 2.938 (5) to 3.305 (6)Å for Na2/N2. Thereby every cation is coordinated by three oxygen atoms belonging to SO4 tetrahedra and by six oxygen atoms belonging to Te(OH)6 octahedra. The structure of the title compound is stabilized via medium-strong O—H···O hydrogen bonds between the Te(OH)6 octahedra and SO4 tetrahedra (Fig. 3), and between N—H···O hydrogen bonds between the ammonium cations and various oxygen atoms in the structure (see hydrogen bonding Table).

Experimental

Transparent, colorless single crystals of the title compound were grown from an aqueous solution consisting of a stoichiometric mixture (ratio 1:1.5:0.5) of H6TeO6 (Aldrich, 99%) (NH4)2SO4 (Aldrich, 99.99%) and Na2SO4 (Aldrich, 99%) after evaporation at room temperature.

Refinement

H atoms of the Te(OH)6 group were located in an electron density difference map and were refined with O—H distance restraints of 0.95 (2) Å and a common Uiso parameter. H atoms of the ammonium groups could not be located and were excluded from the refinement. For the refinement of the occupation factors for N and Na atoms, their sums were restrained to be equal to 1. The highest peak in the final Fourier map is located 0.044 Å from Te2 and the deepest hole 0.43 Å from the same atom.

Figures

Fig. 1.
Projection of the crystal structure of the title compound on the ab plane.
Fig. 2.
A part of the structure of Na0.39(NH4)1.61SO4.Te(OH)6, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes:(a) -x + 1,-y, -z; (b) -x, -y + 1, -z]
Fig. 3.
Crystal structure of Na0.39(NH4)1.61SO4.Te(OH)6 showing hydrogen bonds with dashed lines.

Crystal data

Na0.39(NH4)1.61SO4·Te(OH)6F000 = 678.224
Mr = 357.22Dx = 2.418 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 919 reflections
a = 13.690 (1) Åθ = 2.7–30.1º
b = 6.592 (1) ŵ = 3.30 mm1
c = 11.345 (1) ÅT = 298 K
β = 106.58 (1)ºParallelepiped, colourless
V = 981.26 (19) Å30.15 × 0.14 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer638 reflections with I > 3σ(I)
Monochromator: graphiteRint = 0.000
T = 297 Kθmax = 30.2º
[var phi] scansθmin = 1.6º
Absorption correction: multi-scan(MULABS in PLATON; Spek, 2007)h = −16→14
Tmin = 0.615, Tmax = 0.719k = −7→7
919 measured reflectionsl = −5→5
849 independent reflections

Refinement

Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.043  Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982); W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.527 0.367 0.302
S = 0.93(Δ/σ)max = 0.0001
638 reflectionsΔρmax = 0.51 e Å3
104 parametersΔρmin = −1.15 e Å3
1 restraintExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Te10.50000.50000.00000.0099
Te20.00001.00000.00000.0106
S1−0.24900 (9)−0.49139 (17)−0.2352 (2)0.0124
Na1−0.1448 (2)0.0149 (2)−0.3454 (2)0.01810.2590
N1−0.1448 (2)0.0149 (2)−0.3454 (2)0.01810.7410
Na2−0.3539 (2)0.0047 (2)−0.0920 (2)0.02290.1300
N2−0.3539 (2)0.0047 (2)−0.0920 (2)0.02290.8700
O10.5309 (3)0.5871 (6)−0.1453 (6)0.0241
O20.4606 (3)0.2370 (5)−0.0661 (5)0.0232
O30.3647 (2)0.6044 (5)−0.0656 (5)0.0174
O4−0.1350 (2)1.0859 (5)−0.0867 (5)0.0188
O50.0167 (2)1.2375 (5)0.1011 (5)0.0150
O60.0519 (2)1.1390 (5)−0.1165 (6)0.0174
O7−0.1698 (3)−0.5105 (5)−0.1149 (6)0.0221
O8−0.3350 (2)−0.6287 (5)−0.2355 (5)0.0160
O9−0.2843 (2)−0.2792 (5)−0.2508 (5)0.0202
O10−0.2079 (3)−0.5499 (6)−0.3357 (6)0.0213
H10.54960.4942−0.16310.0500*
H20.40060.2489−0.12880.0500*
H30.37480.7041−0.12570.0500*
H4−0.13281.2273−0.09420.0500*
H5−0.03791.33020.05910.0500*
H60.10371.0563−0.13470.0500*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te10.00995 (8)0.00995 (8)0.00995 (8)0.00017 (8)0.00296 (8)0.00017 (8)
Te20.01064 (8)0.01064 (8)0.01064 (8)0.00017 (8)0.00316 (8)0.00017 (8)
S10.0128 (9)0.0116 (8)0.013 (3)0.0000 (4)0.0042 (12)0.0010 (8)
Na10.0213 (2)0.0181 (2)0.0197 (2)0.0029 (2)0.0133 (2)0.0000 (2)
N10.0213 (2)0.0181 (2)0.0197 (2)0.0029 (2)0.0133 (2)0.0000 (2)
Na20.0233 (2)0.0199 (2)0.0285 (2)−0.0014 (2)0.0122 (2)0.0024 (2)
N20.0233 (2)0.0199 (2)0.0285 (2)−0.0014 (2)0.0122 (2)0.0024 (2)
O10.0316 (18)0.030 (2)0.016 (2)0.0127 (15)0.015 (2)0.009 (2)
O20.0272 (16)0.0145 (12)0.020 (4)0.0006 (12)−0.006 (2)−0.0080 (17)
O30.0103 (11)0.0209 (16)0.021 (4)0.0017 (11)0.0045 (16)0.003 (2)
O40.0143 (11)0.0161 (16)0.023 (4)0.0017 (11)0.0005 (15)0.0052 (19)
O50.0194 (15)0.0176 (14)0.008 (3)0.0032 (12)0.0042 (19)−0.0027 (16)
O60.0234 (16)0.0191 (15)0.014 (3)0.0045 (13)0.0119 (19)0.0034 (17)
O70.0190 (18)0.0192 (18)0.022 (4)−0.0001 (12)−0.004 (2)0.002 (2)
O80.0157 (15)0.0212 (16)0.013 (5)−0.0030 (12)0.006 (2)0.002 (2)
O90.0167 (16)0.0146 (13)0.026 (5)0.0022 (12)0.001 (2)0.001 (2)
O100.0189 (18)0.0247 (16)0.026 (4)−0.0032 (14)0.015 (2)−0.005 (2)

Geometric parameters (Å, °)

Te1—H1i2.146O4—H40.937
Te1—O3i1.916 (3)O5—H50.978
Te1—O2i1.905 (4)O6—H60.963
Te1—O1i1.903 (6)Na1—O6iii2.873 (4)
Te1—O11.903 (6)Na1—O4iv2.937 (6)
Te1—O21.905 (4)Na1—O5v2.947 (4)
Te1—O31.916 (3)Na1—O3vi2.950 (4)
Te1—H12.146Na1—O7vii2.978 (7)
Te2—O5ii1.915 (4)Na1—O10viii3.008 (4)
Te2—O4ii1.914 (3)Na1—O93.120 (4)
Te2—O6ii1.904 (5)Na1—O6iv3.267 (6)
Te2—O41.914 (3)Na1—O5ix3.278 (5)
Te2—O51.915 (4)Na2—O92.938 (5)
Te2—O61.904 (5)Na2—O8viii2.966 (4)
S1—O71.486 (6)Na2—O4iv3.029 (4)
S1—O81.485 (3)Na2—O10x3.037 (7)
S1—O91.474 (3)Na2—O2xi3.050 (4)
S1—O101.460 (6)Na2—O2xii3.063 (5)
O1—H10.715Na2—O1xiii3.144 (5)
O2—H20.924Na2—O3ix3.164 (5)
O3—H30.985Na2—O1vi3.305 (6)
O3i—Te1—O2i92.32 (15)O4ii—Te2—O6ii89.85 (18)
O3i—Te1—O1i89.1 (2)O5ii—Te2—O490.07 (16)
O2i—Te1—O1i92.4 (2)O4ii—Te2—O4179.994
O3i—Te1—O190.9 (2)O6ii—Te2—O490.15 (18)
O2i—Te1—O187.6 (2)O5ii—Te2—O5179.994
O1i—Te1—O1179.994O4ii—Te2—O590.07 (16)
H1i—Te1—O2103.413O6ii—Te2—O588.98 (19)
O3i—Te1—O287.68 (15)O4—Te2—O589.93 (16)
O2i—Te1—O2179.994O5ii—Te2—O688.98 (19)
O1i—Te1—O287.6 (2)O4ii—Te2—O690.15 (18)
O1—Te1—O292.4 (2)O6ii—Te2—O6179.994
H1i—Te1—O379.615O4—Te2—O689.85 (18)
O3i—Te1—O3179.994O5—Te2—O691.02 (19)
O2i—Te1—O387.68 (15)O7—S1—O8108.7 (3)
O1i—Te1—O390.9 (2)O7—S1—O9108.6 (3)
O1—Te1—O389.1 (2)O8—S1—O9110.21 (19)
O2—Te1—O392.32 (15)O7—S1—O10110.6 (3)
O5ii—Te2—O4ii89.93 (16)O8—S1—O10108.6 (3)
O5ii—Te2—O6ii91.02 (19)O9—S1—O10110.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z; (iii) −x, y−3/2, −z−1/2; (iv) x, y−1, z; (v) x, −y+3/2, z−1/2; (vi) −x, y−1/2, −z−1/2; (vii) x, −y−1/2, z−1/2; (viii) x, y+1, z; (ix) −x, −y+1, −z; (x) x, −y−1/2, z+1/2; (xi) x−1, y, z; (xii) −x, −y, −z; (xiii) x−1, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O9xiv0.924 (4)1.787 (4)2.700 (6)169.2 (2)
O3—H3···O8xv0.985 (5)1.871 (5)2.799 (7)155.7 (2)
O4—H4···O7xvi0.937 (3)1.798 (3)2.706 (7)162.4 (2)
O6—H6···O10xv0.963 (4)1.706 (4)2.658 (6)169.5 (3)
N1—···.O6iii..2.873 (4).
N1—···.O4iv..2.937 (6).
N1—···.O5v..2.947 (4).
N1—···.O3vi..2.950 (4).
N1—···.O7vii..2.978 (7).
N1—···.O10viii..3.008 (4).
N2—···.O9..2.938 (5).
N2—···.O8viii..2.966 (4).
N2—···.O4iv..3.029 (4).
N2—···.O10x..3.037 (7).
N2—···.O2xi..3.050 (4).
N2—···.O2xii..3.063 (5).

Symmetry codes: (xiv) −x, y+1/2, −z−1/2; (xv) −x, y+3/2, −z−1/2; (xvi) x, y+2, z; (iii) −x, y−3/2, −z−1/2; (iv) x, y−1, z; (v) x, −y+3/2, z−1/2; (vi) −x, y−1/2, −z−1/2; (vii) x, −y−1/2, z−1/2; (viii) x, y+1, z; (x) x, −y−1/2, z+1/2; (xi) x−1, y, z; (xii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2171).

References

  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Version 2.1b. Crystal Impact GbR, Bonn, Germany.
  • Dammak, M., Ktari, L., Cousson, A. & Mhiri, T. (2005). J. Solid State Chem.178, 2109–2116.
  • Ktari, L., Dammak, M., Hadrich, A., Cousson, A., Nierlich, M., Romain, F. & Mhiri, T. (2004). Solid State Sci.6, 1393–1401.
  • Ktari, L., Dammak, M., Mhiri, T. & Kolsi, A. W. (2002). Phys. Chem. News, 8, 1–8.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2007). PLATON Utrecht University, The Netherlands.
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1981). Acta Cryst. B37, 650–652.
  • Zilber, R., Tordjman, I. & Guitel, J. C. (1980). Acta Cryst. B36, 2741–2743.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography