PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o620.
Published online 2008 February 22. doi:  10.1107/S1600536808003383
PMCID: PMC2960852

1,4-Bis(benz­yloxy)-2-tert-butyl­benzene

Abstract

The title compound, C24H26O2, was obtained unintentionally as the product of an attempted synthesis of a new chiral cobalt salen catalyst. There are no classical hydrogen bonds; inter­molecular C—H(...)π stacking inter­actions between aromatic rings help to establish the mol­ecular conformation.

Related literature

For related literature, see: Annis & Jacobsen (1999 [triangle]); Kwon & Kim (2003 [triangle]); Ready & Jacobsen (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o620-scheme1.jpg

Experimental

Crystal data

  • C24H26O2
  • M r = 346.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o620-efi1.jpg
  • a = 6.5570 (13) Å
  • b = 23.772 (5) Å
  • c = 12.924 (3) Å
  • β = 93.21 (3)°
  • V = 2011.3 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.969, T max = 0.986
  • 4285 measured reflections
  • 3935 independent reflections
  • 2336 reflections with I > 2σ(I)
  • R int = 0.027
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.162
  • S = 1.02
  • 3935 reflections
  • 188 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003383/rk2077sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003383/rk2077Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Chiral Co(salen) complexes are widely used in the Hydrolytic Kinetic Resolution of terminal epoxides, such as epichlorohydrin (Annis & Jacobsen, 1999). Bis–phenols, such as 2–tert–butyl–hydroquinone, are useful as starting materials for the synthesis of salicylaldehyde (Ready & Jacobsen, 2001), especially in the synthesis of polymeric salen complexes (Kwon & Kim, 2003). We here report the molecular and crystal structure of the title compound (I).

The atom–numbering scheme of (I) is shown in Fig. 1. A l l bond lengths and angles are within normal ranges (Allen et al., 1987). The molecule contains three phenyl rings - ring 1 (C1–C6), ring 2 (C8–C13), ring 3 (C19—C24), which are planar. The dihedral angle between ring 1 and ring 2 is 48.5 (4)°. There are no typical hydrogen bonds, while intermolecular C—H···π stacking interactions between aromatic rings help to stabilize the molecular conformation of compound (I).

Experimental

Under N2 atmosphere, a mixture of 5.5 g (33 mmol) of 2–tert–butyl–hydroquinone, 2.25 g anhydrous potassium carbonate (16.0 mmol) in 75 ml dry acetonitrile were stirred for half an hour at room temperature. Subsequently 8.2 g (66 mmol) of benzyl chloride and 600 mg (3.6 mmol) of potassium iodide were added to the reaction mixture and was refluxed for 3 h in inert atmosphere. The mixture was cooled to room temperature and was filtrated and the solvent was removed under reduced pressure. The crude product was purified with n–hexane solution. Crystals of (I) suitable for X–ray diffraction were further recrystallized by slow evaporation of acetone. 1H NMR (CDCl3, δ, p.p.m.) 7.45 (q, 10H), 7.00 (s, 1H), 6.89 (d, 1H), 6.74 (d, 1H), 5.05 (s, 2H), 4.99 (S, 2H), 1.38 (s, 9H).

Refinement

During the refinement, the phenyl rings were treated as rigid hexagons with C–C bond lengths of 1.39 Å. H atoms were positioned geometrically (C—H = 0.930, 0.970 and 0.960Å for aromatic, methylene and methyl H atoms respectively) and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
A packing diagram of (I) showing the intermolecular C—H···π interactions (dashed lines). The H atoms not involved in H–bonds are omitted for clarity. Cg2 and Cg3 denote the centroids of the C8–C13 ...

Crystal data

C24H26O2F000 = 744
Mr = 346.45Dx = 1.144 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.5570 (13) Åθ = 9–13º
b = 23.772 (5) ŵ = 0.07 mm1
c = 12.924 (3) ÅT = 293 (2) K
β = 93.21 (3)ºBlock, colourless
V = 2011.3 (7) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.027
Radiation source: fine–focus sealed tubeθmax = 26.0º
Monochromator: graphiteθmin = 1.7º
T = 293(2) Kh = 0→8
ω/2θ scansk = 0→29
Absorption correction: ψ scan(North et al., 1968)l = −15→15
Tmin = 0.969, Tmax = 0.9863 standard reflections
4285 measured reflections every 200 reflections
3935 independent reflections intensity decay: none
2336 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.072  w = 1/[σ2(Fo2) + (0.0054P)2 + 4.1075P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.35 e Å3
3935 reflectionsΔρmin = −0.33 e Å3
188 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0384 (15)
Secondary atom site location: difference Fourier map

Special details

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0565 (4)0.27733 (12)0.5023 (3)0.0843 (15)
H11.16450.25230.51330.101*
C21.0574 (4)0.31573 (15)0.4212 (3)0.0931 (17)
H21.16610.31640.37800.112*
C30.8960 (4)0.35314 (12)0.4048 (2)0.0765 (13)
H30.89660.37880.35050.092*
C40.7335 (4)0.35215 (11)0.4694 (2)0.0582 (11)
C50.7326 (4)0.31375 (13)0.55046 (19)0.0719 (13)
H50.62390.31310.59370.086*
C60.8941 (5)0.27634 (11)0.5669 (2)0.0777 (14)
H60.89340.25060.62120.093*
C70.5631 (7)0.3943 (2)0.4568 (3)0.0746 (14)
H7A0.45140.38310.49840.090*
H7B0.61120.43090.48060.090*
C80.3396 (3)0.43592 (8)0.32489 (12)0.0461 (9)
C90.2627 (2)0.43853 (6)0.22256 (11)0.0447 (8)
C100.1057 (2)0.47575 (8)0.19454 (11)0.0475 (9)
H100.05430.47750.12610.057*
C110.0255 (3)0.51035 (8)0.26886 (14)0.0486 (9)
C120.1024 (3)0.50774 (8)0.37119 (13)0.0530 (10)
H120.04870.53090.42090.064*
C130.2594 (3)0.47053 (9)0.39920 (10)0.0547 (10)
H130.31080.46880.46770.066*
C140.3591 (3)0.40301 (9)0.13571 (14)0.0655 (10)
C150.2469 (4)0.41208 (13)0.02966 (13)0.0934 (18)
H15A0.25070.45120.01180.140*
H15B0.10740.40020.03260.140*
H15C0.31230.3905−0.02180.140*
C160.3501 (8)0.34034 (19)0.1595 (4)0.0885 (16)
H16A0.42010.33310.22540.133*
H16B0.41450.31970.10650.133*
H16C0.21010.32880.16160.133*
C170.5827 (6)0.4212 (2)0.1272 (4)0.0834 (15)
H17A0.65650.41560.19270.125*
H17B0.58750.46020.10850.125*
H17C0.64390.39900.07510.125*
C18−0.2037 (6)0.58533 (19)0.3026 (3)0.0689 (13)
H18A−0.09480.60940.33070.083*
H18B−0.26100.56530.35960.083*
C19−0.3651 (2)0.61998 (7)0.24720 (11)0.0528 (10)
C20−0.3295 (3)0.67607 (6)0.2238 (2)0.0705 (12)
H20−0.20360.69230.24220.085*
C21−0.4821 (3)0.70793 (7)0.1730 (2)0.0846 (15)
H21−0.45830.74550.15740.102*
C22−0.6703 (3)0.68368 (9)0.14560 (14)0.0824 (15)
H22−0.77240.70500.11160.099*
C23−0.7060 (2)0.62759 (9)0.1690 (2)0.0797 (14)
H23−0.83190.61140.15060.096*
C24−0.5534 (2)0.59573 (8)0.21979 (18)0.0636 (11)
H24−0.57720.55820.23540.076*
O10.4937 (3)0.39766 (9)0.35168 (17)0.0581 (7)
O2−0.1255 (2)0.54656 (6)0.23203 (9)0.0577 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.061 (3)0.083 (4)0.107 (4)0.019 (3)−0.014 (3)0.000 (3)
C20.056 (3)0.102 (4)0.123 (5)0.014 (3)0.013 (3)0.024 (4)
C30.061 (3)0.078 (3)0.089 (3)0.009 (2)0.002 (2)0.021 (3)
C40.058 (2)0.070 (2)0.055 (2)0.013 (2)−0.0180 (19)−0.015 (2)
C50.076 (3)0.084 (3)0.056 (3)0.013 (3)−0.001 (2)−0.003 (2)
C60.096 (4)0.070 (3)0.065 (3)0.014 (3)−0.014 (3)0.008 (2)
C70.081 (3)0.082 (3)0.058 (3)0.032 (3)−0.023 (2)−0.013 (2)
C80.0405 (19)0.051 (2)0.046 (2)−0.0003 (17)−0.0038 (15)−0.0029 (17)
C90.0414 (19)0.049 (2)0.0437 (19)−0.0036 (17)0.0049 (15)−0.0008 (16)
C100.0413 (19)0.061 (2)0.0397 (19)−0.0004 (18)−0.0004 (15)−0.0006 (17)
C110.0343 (18)0.058 (2)0.053 (2)−0.0001 (17)0.0006 (16)0.0002 (18)
C120.057 (2)0.057 (2)0.044 (2)0.0122 (19)0.0000 (17)−0.0064 (18)
C130.055 (2)0.066 (3)0.041 (2)0.015 (2)−0.0061 (17)−0.0015 (18)
C140.065 (2)0.075 (3)0.057 (2)0.002 (2)0.0035 (17)−0.0086 (19)
C150.100 (4)0.131 (5)0.049 (3)0.039 (3)−0.004 (2)−0.020 (3)
C160.114 (4)0.071 (3)0.081 (3)0.001 (3)0.009 (3)−0.021 (3)
C170.065 (3)0.112 (4)0.076 (3)0.001 (3)0.028 (2)−0.009 (3)
C180.066 (3)0.090 (3)0.051 (2)0.032 (2)−0.001 (2)−0.004 (2)
C190.051 (2)0.063 (3)0.045 (2)0.0094 (19)0.0053 (17)−0.0049 (18)
C200.069 (3)0.066 (3)0.076 (3)−0.012 (2)0.000 (2)−0.012 (2)
C210.109 (4)0.054 (3)0.091 (4)0.011 (3)0.005 (3)0.008 (3)
C220.077 (3)0.096 (4)0.073 (3)0.032 (3)0.000 (3)0.010 (3)
C230.050 (3)0.107 (4)0.082 (3)0.002 (3)0.003 (2)0.004 (3)
C240.054 (2)0.066 (3)0.072 (3)0.002 (2)0.008 (2)0.007 (2)
O10.0566 (16)0.0708 (18)0.0461 (14)0.0190 (14)−0.0045 (12)−0.0035 (13)
O20.0476 (15)0.0733 (18)0.0516 (15)0.0168 (13)−0.0015 (12)−0.0063 (13)

Geometric parameters (Å, °)

C1—C21.3900C14—C161.523 (5)
C1—C61.3900C14—C151.5341
C1—H10.9300C14—C171.539 (5)
C2—C31.3900C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.3900C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.3900C16—H16B0.9600
C4—C71.503 (4)C16—H16C0.9600
C5—C61.3900C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—O11.411 (4)C18—O21.413 (4)
C7—H7A0.9700C18—C191.492 (4)
C7—H7B0.9700C18—H18A0.9700
C8—O11.3888C18—H18B0.9700
C8—C91.3900C19—C201.3900
C8—C131.3900C19—C241.3900
C9—C101.3900C20—C211.3900
C9—C141.5657C20—H200.9300
C10—C111.3900C21—C221.3900
C10—H100.9300C21—H210.9300
C11—O21.3766C22—C231.3900
C11—C121.3900C22—H220.9300
C12—C131.3900C23—C241.3900
C12—H120.9300C23—H230.9300
C13—H130.9300C24—H240.9300
C2—C1—C6120.0C15—C14—C9111.8
C2—C1—H1120.0C17—C14—C9108.9 (2)
C6—C1—H1120.0C14—C15—H15A109.5
C1—C2—C3120.0C14—C15—H15B109.5
C1—C2—H2120.0H15A—C15—H15B109.5
C3—C2—H2120.0C14—C15—H15C109.5
C4—C3—C2120.0H15A—C15—H15C109.5
C4—C3—H3120.0H15B—C15—H15C109.5
C2—C3—H3120.0C14—C16—H16A109.5
C5—C4—C3120.0C14—C16—H16B109.5
C5—C4—C7119.0 (3)H16A—C16—H16B109.5
C3—C4—C7120.9 (3)C14—C16—H16C109.5
C4—C5—C6120.0H16A—C16—H16C109.5
C4—C5—H5120.0H16B—C16—H16C109.5
C6—C5—H5120.0C14—C17—H17A109.5
C5—C6—C1120.0C14—C17—H17B109.5
C5—C6—H6120.0H17A—C17—H17B109.5
C1—C6—H6120.0C14—C17—H17C109.5
O1—C7—C4109.9 (3)H17A—C17—H17C109.5
O1—C7—H7A109.7H17B—C17—H17C109.5
C4—C7—H7A109.7O2—C18—C19108.9 (3)
O1—C7—H7B109.7O2—C18—H18A109.9
C4—C7—H7B109.7C19—C18—H18A109.9
H7A—C7—H7B108.2O2—C18—H18B109.9
O1—C8—C9119.10C19—C18—H18B109.9
O1—C8—C13120.88H18A—C18—H18B108.3
C9—C8—C13120.0C20—C19—C24120.0
C10—C9—C8120.0C20—C19—C18120.7 (2)
C10—C9—C14118.6C24—C19—C18119.3 (2)
C8—C9—C14121.2C21—C20—C19120.0
C11—C10—C9120.0C21—C20—H20120.0
C11—C10—H10120.0C19—C20—H20120.0
C9—C10—H10120.0C20—C21—C22120.0
O2—C11—C10115.07C20—C21—H21120.0
O2—C11—C12124.91C22—C21—H21120.0
C10—C11—C12120.0C21—C22—C23120.0
C13—C12—C11120.0C21—C22—H22120.0
C13—C12—H12120.0C23—C22—H22120.0
C11—C12—H12120.0C24—C23—C22120.0
C12—C13—C8120.0C24—C23—H23120.0
C12—C13—H13120.0C22—C23—H23120.0
C8—C13—H13120.0C23—C24—C19120.0
C16—C14—C15107.2 (2)C23—C24—H24120.0
C16—C14—C17109.7 (3)C19—C24—H24120.0
C15—C14—C17108.0 (2)C8—O1—C7117.9 (2)
C16—C14—C9111.2 (2)C11—O2—C18117.68 (19)
C6—C1—C2—C30.0C10—C9—C14—C16−124.7 (3)
C1—C2—C3—C40.0C8—C9—C14—C1659.3 (3)
C2—C3—C4—C50.0C10—C9—C14—C15−4.9
C2—C3—C4—C7176.5 (3)C8—C9—C14—C15179.1
C3—C4—C5—C60.0C10—C9—C14—C17114.4 (2)
C7—C4—C5—C6−176.6 (3)C8—C9—C14—C17−61.6 (2)
C4—C5—C6—C10.0O2—C18—C19—C20−107.8 (3)
C2—C1—C6—C50.0O2—C18—C19—C2472.8 (3)
C5—C4—C7—O1−135.2 (3)C24—C19—C20—C210.0
C3—C4—C7—O148.2 (4)C18—C19—C20—C21−179.40 (18)
O1—C8—C9—C10178.7C19—C20—C21—C220.0
C13—C8—C9—C100.0C20—C21—C22—C230.0
O1—C8—C9—C14−5.3C21—C22—C23—C240.0
C13—C8—C9—C14176.0C22—C23—C24—C190.0
C8—C9—C10—C110.0C20—C19—C24—C230.0
C14—C9—C10—C11−176.1C18—C19—C24—C23179.41 (18)
C9—C10—C11—O2178.3C9—C8—O1—C7−177.5 (3)
C9—C10—C11—C120.0C13—C8—O1—C71.2 (4)
O2—C11—C12—C13−178.2C4—C7—O1—C8−178.2 (3)
C10—C11—C12—C130.0C10—C11—O2—C18−176.0 (2)
C11—C12—C13—C80.0C12—C11—O2—C182.3 (3)
O1—C8—C13—C12−178.7C19—C18—O2—C11−179.7 (2)
C9—C8—C13—C120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···Cg3i0.932.963.725141
C15—H15C···Cg3ii0.962.873.818168
C24—H24···Cg2iii0.932.713.560153

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2077).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Annis, D. A. & Jacobsen, E. N. (1999). J. Am. Chem. Soc.121, 4147–4154.
  • Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kwon, M. A. & Kim, G. J. (2003). Catal. Today, 87, 145–151.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ready, J. M. & Jacobsen, E. N. (2001). J. Am. Chem. Soc.123, 2687–2688. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography