PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m491–m492.
Published online 2008 February 20. doi:  10.1107/S1600536808004467
PMCID: PMC2960851

Poly[triaquabis­(μ2-3-carboxy­pyrazine-2-carboxyl­ato)dilithium(I)]

Abstract

In the title compound, [Li2(C6H3N2O4)2(H2O)3]n, the coordination number for both independent Li+ cations is five. One of the Li+ ions has a distorted trigonal–bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3-carboxy­pyrazine-2-carboxyl­ate ligand, two O atoms from two water mol­ecules, and an N and a carboxyl­ate O atom of a second 3-carboxy­pyrazine-2-carboxyl­ate ligand. The other Li+ ion also has a distorted trigonal–bipyramidal geometry, coordinated by one water mol­ecule and two 3-carboxy­pyrazine-2-carboxyl­ate ligands through an N and a carboxyl­ate O atom from each. One of the carboxyl groups of the two ligands takes part in an intra­molecular O—H(...)O hydrogen bond. The stabilization of the crystal structure is further assisted by O—H(...)O, O—H(...)N and C—H(...)O hydrogen-bonding inter­actions involving the water mol­ecules and carboxyl­ate O atoms.

Related literature

For related literature, see: Chen et al. (2007 [triangle]); Clark & Reid (1995 [triangle]); Erxleben (2003 [triangle]); Fei, Ang et al. (2006 [triangle]); Fei, Geldbach et al. 2006 [triangle]); Gao et al. (2005 [triangle]); López Garzón et al. (2003 [triangle]); Grossie et al. (2006 [triangle]); Haiduc & Edelmann (1999 [triangle]); Janiak (2003 [triangle]); Kim et al. (2007 [triangle]); Kitagawa et al. (2004 [triangle]); Lehn (1995 [triangle]); Mueller et al. (2006 [triangle]); Nepveu et al. (1993 [triangle]); Pancholi & Patel (1996 [triangle]); Ptasiewicz-Bak & Leciejewicz (1997a [triangle],b [triangle]); Richard et al. (1973 [triangle]); Speakman (1972 [triangle]); Sreenivasulu & Vittal (2004 [triangle]); Starosta & Leciejewicz (2005 [triangle]); Takusagawa & Shimada (1973 [triangle]); Tombul et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]); Ye et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m491-scheme1.jpg

Experimental

Crystal data

  • [Li2(C6H3N2O4)2(H2O)3]
  • M r = 402.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m491-efi1.jpg
  • a = 15.3413 (9) Å
  • b = 7.9415 (4) Å
  • c = 14.9097 (9) Å
  • β = 117.371 (4)°
  • V = 1613.13 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 295 (2) K
  • 0.43 × 0.30 × 0.11 mm

Data collection

  • Stoe IPDSII diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.947, T max = 0.985
  • 13081 measured reflections
  • 3337 independent reflections
  • 2127 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.143
  • S = 1.00
  • 3337 reflections
  • 295 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004467/at2542sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004467/at2542Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Faculty of Arts and Sciences, Kırıkkale University, for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

The systematic design of metal-organic frameworks has became the most fascinating and challenging area of research particularly during the last decade (Lehn, 1995; Haiduc & Edelmann, 1999). Hence, the synthesis of novel coordination polymers has advanced rapidly because of their applications in many areas such as, hydrogen storage (Kitagawa et al., 2004; Mueller et al., 2006), ion-exchange resins (Pancholi & Patel, 1996) and catalysis (Janiak, 2003). Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers giving the structures with a diverse range of topologies and conformations, due to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye et al., 2005; Fei, Geldbach et al., 2006). Although most of the studies conducted in this area is primarily focused on coordination polymers containing transition metals as connectors, such as Zn, Ni and Co (Sreenivasulu & Vittal, 2004; Fei, Ang et al., 2006), there is little attention on the Group I metal (López Garzón et al., 2003; Gao et al., 2005; Chen et al., 2007).

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al. 2006), caesium (Tombul et al. 2007) and potassium (Tombul et al. 2008) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

As shown in Fig. 1, compound (I) is a polymeric dinuclear complex with two kinds of Li atoms, two kinds of pyrazine-2,3-dicarboxylate ligands and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are distorted trigonal-bipyramidal, while the coordination modes of the pyrazine-2,3-dicarboxylate ligands are chelation. The Li1 ion has a five-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, two O atoms from two water molecules and a chelation pyrazine-2,3-dicarboxylate ligand (through the interactions by utilizing both N and O atoms) of the adjacent molecule. The Li2 ion has also distorted trigonal-bipyramidal geometry, with one water molecule, one chelation ligand molecule (through the interactions by utilizing both N and O atoms of the same ligand) and symmetry related chelation pyrazine-2–3-dicarboxylate ligand. There is no metal to-metal interaction; the Li–Li distance is 7.221 (2) Å. The Li—O distances are in the range 1.980 (5) Å to 2.074 (4) Å (for Li1) and 1.901 (5) Å to 1.974 (4) Å (for Li2), in accordance with the corresponding values reported for other lithium complexes (Chen et al. 2007; Kim et al. 2007). Li—N bond lengths also lie within the normal ranges found for similar bonds in the literature (Grossie et al. 2006). The C—O distances are comparable with structurally similar compounds (Chen et al. 2007). There are appreciable differences between the two carboxyl groups of the each ligand molecule. The C—O distances at C6 and C12 are (1.228 (3) Å, 1.275 and 1.216 (3) Å, 1.283 (3) Å respectively), and these are fairly typical for a carboxylic acid group (Speakman, 1972). On the other hand, those at C5 and C11 are (1.236 (3) Å, 1.268 (3) Å and 1.247 (3) Å, 1.258 (3) Å respectively), giving a strong indication of a carboxylate ion. As is typically the case, the mean value of the four C—O distances in the different carboxyl/carboxylate groups is almost the same, at 1.254 (3) Å, 1.251 (3) Å and 1.252 (3) Å, 1.251 (3) Å, respectively.

In (I), one of the carboxyl groups of each ligand molecule holds its H atom, which takes part in an O—H···O [O···O = 2.380 (3) 2.402 (3) Å respectively] intramolecular hydrogen bonds. Atoms H6A and H10A involved in these bonds and maintain the charge balance within the structure. The dinuclear complexes are linked in a three-dimensional manner by further numerous intermolecular O—H···O··· O—H···N and C—H···O hydrogen bonds (Table 2).

Experimental

Li2CO3 (220 mg, 3 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine 2,3-dicarboxylic acid (1008 mg, 6 mmol), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 323 K for 10 h, until it solidified. The solid product was then redissolved in water (5 ml) and allowed to stand for a day at ambient temperature, after which transparent fine crystals were harvested.

Refinement

All H atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93 Å, O—H in the range 0.86 - 0.94 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Showing the atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -1 + x, y, -1 + z; (b) 1 + x, y,1 + z].
Fig. 2.
View of the stacking structure of (I) within the unit cell, down the b axis.

Crystal data

[Li2(C6H3N2O4)2(H2O)3]F000 = 824
Mr = 402.14Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15847 reflections
a = 15.3413 (9) Åθ = 1.5–27.2º
b = 7.9415 (4) ŵ = 0.15 mm1
c = 14.9097 (9) ÅT = 295 (2) K
β = 117.371 (4)ºPrism, colourless
V = 1613.13 (16) Å30.43 × 0.30 × 0.11 mm
Z = 4

Data collection

Stoe IPDSII diffractometer3337 independent reflections
Monochromator: plane graphite2127 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.083
T = 295(2) Kθmax = 26.5º
rotation method scansθmin = 1.5º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002)h = −19→19
Tmin = 0.947, Tmax = 0.985k = −9→9
13081 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143  w = 1/[σ2(Fo2) + (0.0627P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.011
3337 reflectionsΔρmax = 0.38 e Å3
295 parametersΔρmin = −0.34 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.3129 (2)0.1510 (3)0.0633 (2)0.0544 (7)
H1−0.33430.25980.04090.065*
C2−0.2287 (2)0.1293 (3)0.15271 (19)0.0483 (6)
H2−0.19360.22300.18860.058*
C3−0.24908 (16)−0.1569 (3)0.13584 (16)0.0365 (5)
C4−0.33418 (17)−0.1336 (3)0.04375 (17)0.0380 (5)
C5−0.20414 (17)−0.3209 (3)0.18826 (18)0.0430 (6)
C6−0.40262 (17)−0.2658 (3)−0.02839 (17)0.0430 (6)
C7−0.8269 (2)−0.3841 (3)−0.4244 (2)0.0553 (7)
H7−0.8155−0.4940−0.40020.066*
C8−0.9085 (2)−0.3489 (3)−0.51354 (19)0.0509 (7)
H8−0.9488−0.4367−0.55120.061*
C9−0.87144 (16)−0.0679 (3)−0.49270 (16)0.0371 (5)
C10−0.78391 (15)−0.1039 (3)−0.40504 (15)0.0389 (5)
C11−0.91273 (18)0.1024 (3)−0.53842 (17)0.0412 (6)
C12−0.70304 (15)0.0156 (3)−0.33600 (16)0.0430 (6)
Li1−0.4924 (3)0.0277 (6)−0.1557 (3)0.0524 (10)
Li2−0.0456 (3)−0.1053 (5)0.3065 (3)0.0504 (10)
N1−0.36462 (15)0.0222 (3)0.00823 (15)0.0479 (5)
N2−0.19698 (14)−0.0232 (2)0.18818 (14)0.0418 (5)
N3−0.93097 (15)−0.1938 (3)−0.54689 (14)0.0440 (5)
N4−0.76397 (16)−0.2636 (3)−0.37213 (16)0.0501 (6)
O1−0.53187 (16)0.2659 (3)−0.13886 (16)0.0611 (5)
O2−0.42243 (14)0.0653 (2)−0.23731 (14)0.0512 (5)
O30.00554 (13)0.1034 (2)0.38530 (12)0.0490 (5)
O40.02158 (14)−0.1093 (2)0.22662 (14)0.0557 (5)
O5−0.12608 (12)−0.3144 (2)0.26734 (13)0.0504 (5)
O6−0.24547 (15)−0.4600 (2)0.15083 (16)0.0669 (6)
O7−0.38628 (14)−0.4221 (2)−0.00814 (14)0.0538 (5)
O8−0.47216 (13)−0.2138 (2)−0.10579 (13)0.0566 (5)
O9−0.62851 (13)−0.0447 (2)−0.26899 (14)0.0584 (5)
O10−0.71593 (14)0.1755 (2)−0.34880 (15)0.0559 (5)
O11−0.86572 (14)0.2348 (2)−0.49878 (15)0.0614 (5)
H4A0.017 (2)−0.198 (3)0.1844 (19)0.063 (9)*
H2A−0.3649 (19)0.128 (5)−0.208 (3)0.116 (15)*
H10−0.767 (2)0.195 (7)−0.405 (2)0.15 (2)*
H2B−0.455 (2)0.141 (4)−0.290 (2)0.095 (12)*
H4B0.054 (3)−0.014 (3)0.221 (3)0.115 (15)*
H7A−0.294 (4)−0.453 (11)0.091 (2)0.23 (4)*
H1A−0.565 (4)0.324 (8)−0.200 (3)0.19 (3)*
H1B−0.494 (4)0.359 (5)−0.106 (4)0.18 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0642 (18)0.0299 (13)0.0526 (15)0.0022 (11)0.0128 (14)0.0020 (11)
C20.0555 (15)0.0325 (12)0.0466 (14)−0.0043 (11)0.0145 (12)−0.0015 (11)
C30.0414 (12)0.0318 (12)0.0338 (11)−0.0007 (9)0.0152 (10)−0.0009 (9)
C40.0425 (12)0.0333 (12)0.0334 (11)0.0004 (10)0.0134 (10)0.0031 (9)
C50.0444 (14)0.0357 (12)0.0418 (13)0.0017 (10)0.0139 (11)0.0016 (11)
C60.0443 (13)0.0390 (13)0.0363 (12)0.0013 (10)0.0105 (11)0.0009 (10)
C70.0664 (17)0.0307 (13)0.0525 (15)−0.0025 (12)0.0134 (14)0.0038 (12)
C80.0583 (16)0.0382 (14)0.0426 (13)−0.0091 (12)0.0116 (12)−0.0024 (11)
C90.0403 (12)0.0348 (12)0.0324 (11)0.0008 (9)0.0134 (10)0.0006 (9)
C100.0435 (13)0.0352 (12)0.0340 (11)0.0012 (10)0.0145 (10)0.0007 (10)
C110.0451 (13)0.0382 (13)0.0368 (12)0.0007 (10)0.0158 (11)−0.0003 (10)
C120.0422 (13)0.0400 (13)0.0418 (12)0.0001 (11)0.0150 (11)−0.0011 (11)
Li10.052 (2)0.047 (2)0.047 (2)0.000 (2)0.0136 (19)0.003 (2)
Li20.051 (2)0.047 (2)0.042 (2)0.0013 (19)0.0126 (19)0.0006 (19)
N10.0539 (12)0.0336 (11)0.0427 (11)0.0021 (9)0.0107 (10)0.0024 (9)
N20.0445 (11)0.0344 (10)0.0399 (10)−0.0040 (9)0.0137 (9)−0.0036 (9)
N30.0496 (12)0.0379 (11)0.0371 (10)−0.0050 (9)0.0136 (9)−0.0009 (9)
N40.0543 (13)0.0352 (11)0.0466 (12)0.0027 (9)0.0112 (10)0.0017 (9)
O10.0730 (14)0.0499 (12)0.0585 (12)0.0091 (10)0.0288 (11)0.0100 (10)
O20.0530 (11)0.0438 (10)0.0471 (10)−0.0026 (9)0.0147 (9)0.0027 (8)
O30.0503 (10)0.0431 (10)0.0405 (9)0.0047 (8)0.0096 (8)0.0015 (8)
O40.0657 (12)0.0475 (11)0.0541 (11)−0.0138 (9)0.0277 (10)−0.0132 (9)
O50.0468 (10)0.0426 (10)0.0457 (10)0.0017 (8)0.0076 (8)0.0052 (8)
O60.0637 (12)0.0315 (10)0.0664 (13)−0.0012 (8)−0.0037 (10)0.0030 (9)
O70.0620 (11)0.0341 (9)0.0468 (10)−0.0019 (8)0.0092 (9)−0.0023 (8)
O80.0573 (11)0.0441 (10)0.0432 (10)−0.0007 (8)0.0015 (9)−0.0002 (8)
O90.0437 (10)0.0516 (11)0.0562 (11)−0.0001 (8)0.0026 (9)0.0031 (9)
O100.0527 (11)0.0381 (10)0.0572 (11)−0.0038 (8)0.0083 (9)−0.0052 (9)
O110.0662 (12)0.0322 (9)0.0585 (11)−0.0028 (8)0.0053 (9)−0.0004 (8)

Geometric parameters (Å, °)

C1—N11.323 (3)C11—O3i1.247 (3)
C1—C21.376 (4)C11—O111.258 (3)
C1—H10.9300C12—O91.216 (3)
C2—N21.321 (3)C12—O101.283 (3)
C2—H20.9300Li1—O21.980 (5)
C3—N21.342 (3)Li1—O82.029 (5)
C3—C41.406 (3)Li1—O12.037 (5)
C3—C51.512 (3)Li1—O92.074 (5)
C4—N11.342 (3)Li1—N12.326 (5)
C4—C61.524 (3)Li2—O41.901 (5)
C5—O51.236 (3)Li2—O31.974 (5)
C5—O61.268 (3)Li2—O51.990 (5)
C6—O81.228 (3)Li2—N3ii2.198 (5)
C6—O71.275 (3)Li2—N22.272 (5)
C7—N41.328 (3)N3—Li2i2.198 (5)
C7—C81.372 (4)O1—H1A0.94 (5)
C7—H70.9300O1—H1B0.93 (5)
C8—N31.313 (3)O2—H2A0.93 (4)
C8—H80.9300O2—H2B0.93 (3)
C9—N31.345 (3)O3—C11ii1.247 (3)
C9—C101.404 (3)O4—H4A0.926 (10)
C9—C111.516 (3)O4—H4B0.93 (4)
C10—N41.341 (3)O6—H7A0.86 (3)
C10—C121.525 (3)O10—H100.86 (3)
N1—C1—C2122.2 (2)O1—Li1—O996.5 (2)
N1—C1—H1118.9O2—Li1—N1102.5 (2)
C2—C1—H1118.9O8—Li1—N171.58 (15)
N2—C2—C1120.8 (2)O1—Li1—N192.45 (19)
N2—C2—H2119.6O9—Li1—N1153.7 (2)
C1—C2—H2119.6O4—Li2—O3101.8 (2)
N2—C3—C4120.1 (2)O4—Li2—O5104.1 (2)
N2—C3—C5111.87 (19)O3—Li2—O5154.0 (3)
C4—C3—C5128.1 (2)O4—Li2—N3ii101.6 (2)
N1—C4—C3120.4 (2)O3—Li2—N3ii76.07 (15)
N1—C4—C6110.76 (19)O5—Li2—N3ii97.47 (19)
C3—C4—C6128.9 (2)O4—Li2—N299.97 (19)
O5—C5—O6121.7 (2)O3—Li2—N2101.89 (19)
O5—C5—C3117.9 (2)O5—Li2—N274.75 (16)
O6—C5—C3120.4 (2)N3ii—Li2—N2158.3 (2)
O8—C6—O7122.7 (2)C1—N1—C4117.9 (2)
O8—C6—C4116.8 (2)C1—N1—Li1127.8 (2)
O7—C6—C4120.5 (2)C4—N1—Li1113.84 (18)
N4—C7—C8121.0 (2)C2—N2—C3118.8 (2)
N4—C7—H7119.5C2—N2—Li2129.1 (2)
C8—C7—H7119.5C3—N2—Li2110.33 (19)
N3—C8—C7121.5 (2)C8—N3—C9118.8 (2)
N3—C8—H8119.3C8—N3—Li2i128.8 (2)
C7—C8—H8119.3C9—N3—Li2i111.81 (19)
N3—C9—C10119.9 (2)C7—N4—C10118.8 (2)
N3—C9—C11111.43 (19)Li1—O1—H1A114 (4)
C10—C9—C11128.6 (2)Li1—O1—H1B131 (4)
N4—C10—C9119.4 (2)H1A—O1—H1B93 (5)
N4—C10—C12111.14 (19)Li1—O2—H2A117 (3)
C9—C10—C12129.1 (2)Li1—O2—H2B113 (2)
O3i—C11—O11122.8 (2)H2A—O2—H2B94 (3)
O3i—C11—C9116.9 (2)C11ii—O3—Li2119.70 (19)
O11—C11—C9120.2 (2)Li2—O4—H4A122.7 (18)
O9—C12—O10122.2 (2)Li2—O4—H4B120 (3)
O9—C12—C10118.1 (2)H4A—O4—H4B116 (3)
O10—C12—C10119.4 (2)C5—O5—Li2120.9 (2)
O2—Li1—O8109.5 (2)C5—O6—H7A115 (6)
O2—Li1—O1102.2 (2)C6—O8—Li1125.6 (2)
O8—Li1—O1146.8 (3)C12—O9—Li1140.4 (2)
O2—Li1—O999.7 (2)C12—O10—H10110 (4)
O8—Li1—O987.89 (19)
N1—C1—C2—N2−1.3 (4)C5—C3—N2—C2−178.5 (2)
N2—C3—C4—N1−0.9 (4)C4—C3—N2—Li2−164.2 (2)
C5—C3—C4—N1179.3 (2)C5—C3—N2—Li215.6 (3)
N2—C3—C4—C6178.7 (2)O4—Li2—N2—C2−79.5 (3)
C5—C3—C4—C6−1.1 (4)O3—Li2—N2—C224.9 (3)
N2—C3—C5—O5−2.9 (3)O5—Li2—N2—C2178.4 (2)
C4—C3—C5—O5176.9 (2)N3ii—Li2—N2—C2107.1 (6)
N2—C3—C5—O6177.9 (2)O4—Li2—N2—C384.5 (2)
C4—C3—C5—O6−2.3 (4)O3—Li2—N2—C3−171.01 (19)
N1—C4—C6—O80.7 (3)O5—Li2—N2—C3−17.5 (2)
C3—C4—C6—O8−178.9 (2)N3ii—Li2—N2—C3−88.8 (6)
N1—C4—C6—O7−180.0 (2)C7—C8—N3—C91.0 (4)
C3—C4—C6—O70.4 (4)C7—C8—N3—Li2i172.1 (3)
N4—C7—C8—N3−4.7 (5)C10—C9—N3—C83.6 (3)
N3—C9—C10—N4−4.7 (3)C11—C9—N3—C8−175.8 (2)
C11—C9—C10—N4174.5 (2)C10—C9—N3—Li2i−168.9 (2)
N3—C9—C10—C12175.9 (2)C11—C9—N3—Li2i11.7 (3)
C11—C9—C10—C12−4.8 (4)C8—C7—N4—C103.5 (4)
N3—C9—C11—O3i2.4 (3)C9—C10—N4—C71.1 (4)
C10—C9—C11—O3i−176.9 (2)C12—C10—N4—C7−179.5 (2)
N3—C9—C11—O11−178.5 (2)O4—Li2—O3—C11ii−80.7 (3)
C10—C9—C11—O112.1 (4)O5—Li2—O3—C11ii96.8 (6)
N4—C10—C12—O97.6 (3)N3ii—Li2—O3—C11ii18.5 (2)
C9—C10—C12—O9−173.1 (2)N2—Li2—O3—C11ii176.33 (19)
N4—C10—C12—O10−171.2 (2)O6—C5—O5—Li2164.5 (3)
C9—C10—C12—O108.2 (4)C3—C5—O5—Li2−14.7 (3)
C2—C1—N1—C42.1 (4)O4—Li2—O5—C5−79.1 (3)
C2—C1—N1—Li1−168.8 (3)O3—Li2—O5—C5103.4 (5)
C3—C4—N1—C1−1.0 (4)N3ii—Li2—O5—C5176.8 (2)
C6—C4—N1—C1179.3 (2)N2—Li2—O5—C517.6 (2)
C3—C4—N1—Li1171.2 (2)O7—C6—O8—Li1−169.6 (3)
C6—C4—N1—Li1−8.5 (3)C4—C6—O8—Li19.6 (4)
O2—Li1—N1—C174.5 (3)O2—Li1—O8—C686.4 (3)
O8—Li1—N1—C1−178.9 (3)O1—Li1—O8—C6−75.4 (5)
O1—Li1—N1—C1−28.6 (3)O9—Li1—O8—C6−174.0 (2)
O9—Li1—N1—C1−138.6 (5)N1—Li1—O8—C6−10.7 (3)
O2—Li1—N1—C4−96.8 (2)O10—C12—O9—Li1−4.5 (5)
O8—Li1—N1—C49.8 (2)C10—C12—O9—Li1176.8 (3)
O1—Li1—N1—C4160.1 (2)O2—Li1—O9—C12−78.6 (4)
O9—Li1—N1—C450.1 (6)O8—Li1—O9—C12172.0 (3)
C1—C2—N2—C3−0.6 (4)O1—Li1—O9—C1225.1 (4)
C1—C2—N2—Li2162.3 (3)N1—Li1—O9—C12134.1 (5)
C4—C3—N2—C21.7 (3)

Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O3iii0.926 (10)1.830 (12)2.743 (3)168 (3)
O4—H4B···O5iv0.93 (4)1.89 (3)2.816 (3)171 (4)
O2—H2A···N4v0.93 (4)1.98 (4)2.898 (3)171 (4)
O2—H2B···O8v0.93 (3)1.84 (3)2.772 (3)175 (3)
O1—H1A···O2v0.94 (5)2.11 (4)2.892 (3)141 (6)
O1—H1B···O7vi0.93 (5)2.38 (5)3.305 (3)174 (6)
C7—H7···O11vii0.932.523.184 (3)129
O10—H10···O110.86 (3)1.55 (3)2.404 (3)174 (5)
O6—H7A···O70.86 (3)1.53 (4)2.380 (3)172 (9)

Symmetry codes: (iii) −x, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x−1, y+1/2, −z−1/2; (vi) x, y+1, z; (vii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2542).

References

  • Chen, Z., Fei, Z., Zhao, D., Feng, Y. & Yu, K. (2007). Inorg. Chem. Commun.10, 77–79.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Erxleben, A. (2003). Coord. Chem. Rev.246, 203–228.
  • Fei, Z., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J.12, 4014–4020. [PubMed]
  • Fei, Z., Geldbach, T. J., Zhao, D. & Dyson, P. J. (2006). Chem. Eur. J.12, 2122–2130. [PubMed]
  • Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m348–m350. [PubMed]
  • Grossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827–m829.
  • Haiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic Chemistry. New York: Wiley–VCH.
  • Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  • Kim, E.-J., Kim, C.-H. & Yun, S.-S. (2007). Acta Cryst. C63, m427–m429. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [PubMed]
  • Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley–VCH.
  • López Garzón, R., Godino Salido, M. L., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, m255–m258. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Mueller, U., Schubert, M., Teich, F., Puetter, H., Arndt, K. S. & Pastre, J. (2006). J. Mater. Chem.16, 626–636.
  • Nepveu, F., Berkaoui, M. ’H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466.
  • Pancholi, H. B. & Patel, M. M. (1996). J. Polym. Mater.13, 261–267.
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem.71, 493–500.
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem.71, 1603–1610.
  • Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141–199.
  • Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed.42, 5769–5772. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem.58, 963–968.
  • Stoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
  • Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.
  • Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.
  • Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.
  • Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. [PMC free article] [PubMed]
  • Westrip, S. P. (2008). publCIF In prepararation.
  • Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev.249, 545–565.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography