PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o570.
Published online 2008 February 8. doi:  10.1107/S1600536808003565
PMCID: PMC2960848

1-Phenyl-4-(triphenyl­phosphanyl­idene)pyrrolidine-2,3,5-trione

Abstract

In the title compound, C28H20NO3P, the five-membered maleimide ring is almost planar. The inter­planar angles between the maleimide ring and the three P-bound phenyl rings are 70.6 (2), 60.4 (2) and 54.68 (18)°, while the dihedral angle between the maleimide ring and the N-bound phenyl group is 55.43 (19)°.

Related literature

For related literature, see: Augustin et al. (1979 [triangle]); Trost & Schmidt (1988 [triangle]); Mao et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o570-scheme1.jpg

Experimental

Crystal data

  • C28H20NO3P
  • M r = 449.42
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o570-efi1.jpg
  • a = 18.171 (4) Å
  • b = 12.553 (3) Å
  • c = 19.982 (4) Å
  • V = 4557.9 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995 [triangle]) T min = 0.956, T max = 0.970
  • 3961 measured reflections
  • 3961 independent reflections
  • 2590 reflections with I > 2σ(I)
  • 3 standard reflections every 150 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.180
  • S = 1.07
  • 3961 reflections
  • 299 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003565/tk2239sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003565/tk2239Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Shaoxing Key Discipline of Organic Chemistry.

supplementary crystallographic information

Comment

Organophosphorus compounds play an important role in organic synthesis. In some reactions, a nucleophilic tertiary phosphine initially adds to the triple bond of an electron-deficient alkyne and is finally eliminated from the reaction product after a series of transformations. As such, the tertiary phosphine plays the role of a catalyst (Trost et al., 1988). In recent experiments, the title compound, (I), was synthesized unexpectedly when triphenylphosphine, Ph3P, was used as a catalyst in a reaction with N-phenylmaleimide (Augustin et al., 1979). In this reaction, the Ph3P was not eliminated but instead reacted (Mao et al., 2005). The stucture of (I), Fig. 1, shows the interplanar angles between the maleimide ring and the three P-bound phenyl rings to be 70.6 (2), 60.4 (2) and 54.68 (18)°, respectively, and the dihedral angle between the maleimide ring and the N-bound phenyl group to be 55.4 (3)°.

Experimental

To a CH2Cl2 (5 ml) solution comprising Ph3P (0.06 g, 0.00014 mmol), N-phenylmaleimide (0.173 g, 1.0 mmol) and 1-aminobenzotriazole (0.201 g, 1.5 mmol), lead tetraacetate (0.666 g, 1.5 mmol) in CH2Cl2 (5 ml) was added dropwise. After stirring at room temperature for 30 min, the solution was concentrated and separated by flash chromatography on a silica gel column with petroleum ether/ethyl acetate as eluent. Compound (I) was isolated as one of the products (yield 2.4%); m. pt. 526 K.

Refinement

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom labelling scheme.

Crystal data

C28H20NO3PDx = 1.310 Mg m3
Mr = 449.42Melting point: 527 K
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 187 reflections
a = 18.171 (4) Åθ = 3.6–45.0º
b = 12.553 (3) ŵ = 0.15 mm1
c = 19.982 (4) ÅT = 293 (2) K
V = 4557.9 (16) Å3Block, colorless
Z = 80.30 × 0.20 × 0.20 mm
F000 = 1872

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.0º
T = 293(2) Kh = 0→21
ω/2θ scansk = 0→14
Absorption correction: ψ scan(XCAD4; Harms & Wocadlo, 1995)l = −23→0
Tmin = 0.956, Tmax = 0.9703 standard reflections
3961 measured reflections every 150 reflections
3961 independent reflections intensity decay: none
2590 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051  w = 1/[σ2(Fo2) + (0.0776P)2 + 4.6891P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.40 e Å3
3961 reflectionsΔρmin = −0.34 e Å3
299 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.14772 (19)0.5354 (3)0.47338 (17)0.0463 (9)
C20.14220 (18)0.6388 (3)0.43154 (16)0.0420 (8)
C30.10163 (18)0.6110 (3)0.37341 (15)0.0377 (8)
C40.07940 (18)0.5005 (3)0.37848 (16)0.0408 (8)
C50.0969 (2)0.3513 (3)0.46274 (16)0.0436 (8)
C60.0270 (2)0.3128 (3)0.46980 (19)0.0532 (10)
H6A−0.01310.35450.45770.064*
C70.0162 (3)0.2110 (3)0.4952 (2)0.0619 (11)
H7A−0.03130.18450.50030.074*
C80.0757 (3)0.1496 (3)0.5128 (2)0.0647 (11)
H8A0.06860.08160.53010.078*
C90.1461 (3)0.1888 (3)0.5048 (2)0.0645 (11)
H9A0.18630.14700.51660.077*
C100.1572 (2)0.2895 (3)0.47953 (19)0.0516 (9)
H10A0.20460.31570.47380.062*
C110.1025 (2)0.8272 (3)0.32675 (17)0.0448 (8)
C120.0544 (3)0.9069 (3)0.3436 (2)0.0627 (11)
H12A0.00410.89330.34480.075*
C130.0807 (4)1.0078 (4)0.3588 (3)0.0909 (17)
H13A0.04831.06240.36960.109*
C140.1563 (4)1.0261 (4)0.3575 (3)0.0956 (18)
H14A0.17441.09320.36850.115*
C150.2036 (3)0.9482 (4)0.3407 (2)0.0782 (14)
H15A0.25380.96210.33940.094*
C160.1779 (2)0.8478 (4)0.3253 (2)0.0607 (11)
H16A0.21080.79390.31400.073*
C17−0.02614 (17)0.6940 (3)0.30122 (16)0.0388 (8)
C18−0.07044 (19)0.6465 (3)0.34892 (18)0.0513 (9)
H18A−0.04920.61320.38580.062*
C19−0.1459 (2)0.6482 (4)0.3422 (2)0.0695 (13)
H19A−0.17550.61370.37330.083*
C20−0.1774 (2)0.7013 (4)0.2891 (2)0.0678 (12)
H20A−0.22840.70450.28540.081*
C21−0.1342 (2)0.7497 (4)0.2415 (2)0.0635 (11)
H21A−0.15600.78500.20570.076*
C22−0.05895 (19)0.7460 (3)0.24670 (19)0.0520 (9)
H22A−0.02970.77790.21420.062*
C230.11017 (17)0.6596 (3)0.22757 (16)0.0404 (8)
C240.1195 (2)0.7381 (4)0.17908 (19)0.0568 (10)
H24A0.10710.80840.18850.068*
C250.1475 (2)0.7109 (4)0.11636 (19)0.0642 (12)
H25A0.15400.76310.08390.077*
C260.1653 (2)0.6068 (5)0.1026 (2)0.0694 (13)
H26A0.18390.58860.06070.083*
C270.1559 (2)0.5302 (4)0.1501 (2)0.0667 (12)
H27A0.16810.46000.14030.080*
C280.1284 (2)0.5556 (3)0.21299 (19)0.0536 (10)
H28A0.12240.50270.24510.064*
N10.10879 (16)0.4592 (2)0.43984 (14)0.0445 (7)
O10.17921 (16)0.5257 (2)0.52663 (13)0.0717 (9)
O20.16942 (15)0.7217 (2)0.45206 (13)0.0610 (8)
O30.04234 (15)0.4470 (2)0.34108 (12)0.0568 (7)
P0.07209 (4)0.69405 (7)0.30865 (4)0.0358 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0449 (19)0.056 (2)0.0382 (19)0.0003 (17)−0.0043 (16)−0.0005 (17)
C20.0376 (17)0.052 (2)0.0361 (18)0.0013 (16)−0.0016 (15)−0.0003 (16)
C30.0375 (17)0.0408 (19)0.0348 (17)0.0025 (15)−0.0036 (14)−0.0018 (14)
C40.0430 (19)0.045 (2)0.0341 (17)0.0074 (16)−0.0041 (15)−0.0012 (15)
C50.051 (2)0.045 (2)0.0353 (18)0.0036 (17)0.0005 (15)0.0006 (15)
C60.053 (2)0.055 (2)0.052 (2)0.0084 (19)−0.0034 (18)0.0045 (18)
C70.071 (3)0.056 (3)0.059 (2)−0.010 (2)0.000 (2)0.007 (2)
C80.086 (3)0.044 (2)0.064 (3)0.005 (2)0.001 (2)0.009 (2)
C90.077 (3)0.056 (3)0.061 (3)0.021 (2)0.001 (2)0.010 (2)
C100.048 (2)0.053 (2)0.054 (2)0.0111 (17)0.0017 (17)0.0042 (18)
C110.049 (2)0.048 (2)0.0376 (18)−0.0043 (17)0.0016 (15)0.0031 (15)
C120.073 (3)0.050 (2)0.064 (3)0.005 (2)0.004 (2)−0.007 (2)
C130.120 (5)0.050 (3)0.102 (4)0.004 (3)0.016 (3)−0.016 (3)
C140.141 (6)0.056 (3)0.090 (4)−0.035 (4)−0.009 (4)−0.009 (3)
C150.089 (4)0.077 (3)0.069 (3)−0.040 (3)0.004 (3)−0.004 (3)
C160.053 (2)0.065 (3)0.064 (3)−0.015 (2)0.0049 (19)−0.003 (2)
C170.0333 (17)0.0425 (18)0.0404 (18)0.0039 (15)−0.0031 (14)−0.0014 (15)
C180.0388 (19)0.075 (3)0.0404 (19)−0.0013 (18)0.0010 (16)0.0088 (18)
C190.043 (2)0.108 (4)0.057 (2)−0.007 (2)0.0007 (19)0.017 (2)
C200.033 (2)0.100 (4)0.070 (3)0.004 (2)0.0008 (19)0.012 (3)
C210.042 (2)0.077 (3)0.072 (3)0.003 (2)−0.010 (2)0.021 (2)
C220.0396 (19)0.062 (2)0.055 (2)0.0029 (18)−0.0015 (17)0.0202 (19)
C230.0318 (16)0.056 (2)0.0334 (17)−0.0008 (16)−0.0025 (14)−0.0026 (15)
C240.049 (2)0.074 (3)0.047 (2)0.006 (2)−0.0005 (17)0.009 (2)
C250.053 (2)0.106 (4)0.034 (2)0.004 (2)−0.0038 (17)0.012 (2)
C260.052 (2)0.118 (4)0.038 (2)−0.009 (3)0.0076 (18)−0.018 (3)
C270.069 (3)0.081 (3)0.050 (2)−0.002 (2)0.008 (2)−0.025 (2)
C280.053 (2)0.065 (3)0.043 (2)−0.0003 (19)0.0045 (17)−0.0066 (18)
N10.0512 (17)0.0441 (17)0.0382 (15)0.0040 (14)−0.0062 (13)0.0036 (13)
O10.087 (2)0.075 (2)0.0529 (17)−0.0132 (17)−0.0312 (16)0.0138 (14)
O20.0692 (18)0.0578 (17)0.0560 (16)−0.0164 (14)−0.0168 (14)−0.0007 (13)
O30.0769 (18)0.0463 (15)0.0472 (15)−0.0062 (13)−0.0173 (14)−0.0067 (12)
P0.0330 (4)0.0412 (5)0.0331 (5)0.0014 (4)0.0001 (3)0.0001 (4)

Geometric parameters (Å, °)

C1—O11.214 (4)C14—H14A0.9300
C1—N11.365 (4)C15—C161.379 (6)
C1—C21.547 (5)C15—H15A0.9300
C2—O21.223 (4)C16—H16A0.9300
C2—C31.419 (4)C17—C181.383 (5)
C3—C41.448 (5)C17—C221.403 (5)
C3—P1.746 (3)C17—P1.791 (3)
C4—O31.210 (4)C18—C191.379 (5)
C4—N11.434 (4)C18—H18A0.9300
C5—C61.367 (5)C19—C201.377 (6)
C5—C101.383 (5)C19—H19A0.9300
C5—N11.447 (4)C20—C211.376 (6)
C6—C71.388 (5)C20—H20A0.9300
C6—H6A0.9300C21—C221.372 (5)
C7—C81.375 (6)C21—H21A0.9300
C7—H7A0.9300C22—H22A0.9300
C8—C91.380 (6)C23—C281.377 (5)
C8—H8A0.9300C23—C241.393 (5)
C9—C101.376 (6)C23—P1.814 (3)
C9—H9A0.9300C24—C251.395 (5)
C10—H10A0.9300C24—H24A0.9300
C11—C121.371 (5)C25—C261.374 (6)
C11—C161.394 (5)C25—H25A0.9300
C11—P1.798 (4)C26—C271.362 (6)
C12—C131.387 (6)C26—H26A0.9300
C12—H12A0.9300C27—C281.389 (5)
C13—C141.395 (8)C27—H27A0.9300
C13—H13A0.9300C28—H28A0.9300
C14—C151.344 (8)
O1—C1—N1127.1 (4)C11—C16—H16A120.1
O1—C1—C2126.1 (3)C18—C17—C22119.2 (3)
N1—C1—C2106.8 (3)C18—C17—P121.6 (3)
O2—C2—C3133.9 (3)C22—C17—P119.2 (3)
O2—C2—C1120.4 (3)C19—C18—C17120.3 (4)
C3—C2—C1105.7 (3)C19—C18—H18A119.8
C2—C3—C4108.8 (3)C17—C18—H18A119.8
C2—C3—P128.3 (3)C20—C19—C18119.8 (4)
C4—C3—P122.5 (2)C20—C19—H19A120.1
O3—C4—N1122.3 (3)C18—C19—H19A120.1
O3—C4—C3130.1 (3)C21—C20—C19120.6 (4)
N1—C4—C3107.6 (3)C21—C20—H20A119.7
C6—C5—C10120.9 (3)C19—C20—H20A119.7
C6—C5—N1120.2 (3)C22—C21—C20120.1 (4)
C10—C5—N1118.9 (3)C22—C21—H21A120.0
C5—C6—C7119.6 (4)C20—C21—H21A120.0
C5—C6—H6A120.2C21—C22—C17119.9 (3)
C7—C6—H6A120.2C21—C22—H22A120.0
C8—C7—C6120.0 (4)C17—C22—H22A120.0
C8—C7—H7A120.0C28—C23—C24119.6 (3)
C6—C7—H7A120.0C28—C23—P120.5 (3)
C7—C8—C9119.9 (4)C24—C23—P119.9 (3)
C7—C8—H8A120.0C23—C24—C25119.7 (4)
C9—C8—H8A120.0C23—C24—H24A120.1
C10—C9—C8120.4 (4)C25—C24—H24A120.1
C10—C9—H9A119.8C26—C25—C24120.0 (4)
C8—C9—H9A119.8C26—C25—H25A120.0
C9—C10—C5119.2 (4)C24—C25—H25A120.0
C9—C10—H10A120.4C27—C26—C25120.1 (4)
C5—C10—H10A120.4C27—C26—H26A120.0
C12—C11—C16119.8 (4)C25—C26—H26A120.0
C12—C11—P122.1 (3)C26—C27—C28121.0 (4)
C16—C11—P118.0 (3)C26—C27—H27A119.5
C11—C12—C13120.0 (5)C28—C27—H27A119.5
C11—C12—H12A120.0C23—C28—C27119.7 (4)
C13—C12—H12A120.0C23—C28—H28A120.2
C12—C13—C14119.1 (5)C27—C28—H28A120.2
C12—C13—H13A120.4C1—N1—C4111.1 (3)
C14—C13—H13A120.4C1—N1—C5125.3 (3)
C15—C14—C13120.9 (5)C4—N1—C5123.6 (3)
C15—C14—H14A119.5C3—P—C17111.55 (16)
C13—C14—H14A119.5C3—P—C11108.15 (16)
C14—C15—C16120.3 (5)C17—P—C11108.89 (17)
C14—C15—H15A119.8C3—P—C23113.70 (16)
C16—C15—H15A119.8C17—P—C23107.82 (15)
C15—C16—C11119.8 (4)C11—P—C23106.52 (16)
C15—C16—H16A120.1
O1—C1—C2—O2−1.9 (6)C25—C26—C27—C28−0.1 (6)
N1—C1—C2—O2176.3 (3)C24—C23—C28—C270.0 (5)
O1—C1—C2—C3179.0 (4)P—C23—C28—C27178.5 (3)
N1—C1—C2—C3−2.7 (4)C26—C27—C28—C230.2 (6)
O2—C2—C3—C4−176.2 (4)O1—C1—N1—C4179.9 (4)
C1—C2—C3—C42.7 (4)C2—C1—N1—C41.7 (4)
O2—C2—C3—P−2.9 (6)O1—C1—N1—C51.0 (6)
C1—C2—C3—P176.0 (3)C2—C1—N1—C5−177.3 (3)
C2—C3—C4—O3177.3 (4)O3—C4—N1—C1−179.2 (3)
P—C3—C4—O33.5 (5)C3—C4—N1—C1−0.1 (4)
C2—C3—C4—N1−1.7 (4)O3—C4—N1—C5−0.2 (5)
P—C3—C4—N1−175.5 (2)C3—C4—N1—C5178.9 (3)
C10—C5—C6—C71.1 (6)C6—C5—N1—C1123.4 (4)
N1—C5—C6—C7−176.6 (3)C10—C5—N1—C1−54.3 (5)
C5—C6—C7—C8−0.3 (6)C6—C5—N1—C4−55.5 (5)
C6—C7—C8—C9−0.4 (7)C10—C5—N1—C4126.8 (4)
C7—C8—C9—C100.3 (7)C2—C3—P—C17−119.4 (3)
C8—C9—C10—C50.5 (6)C4—C3—P—C1753.1 (3)
C6—C5—C10—C9−1.2 (6)C2—C3—P—C110.4 (4)
N1—C5—C10—C9176.5 (3)C4—C3—P—C11172.9 (3)
C16—C11—C12—C130.4 (6)C2—C3—P—C23118.4 (3)
P—C11—C12—C13178.4 (4)C4—C3—P—C23−69.1 (3)
C11—C12—C13—C14−0.9 (8)C18—C17—P—C39.6 (4)
C12—C13—C14—C151.3 (9)C22—C17—P—C3−172.3 (3)
C13—C14—C15—C16−1.1 (8)C18—C17—P—C11−109.7 (3)
C14—C15—C16—C110.5 (7)C22—C17—P—C1168.4 (3)
C12—C11—C16—C15−0.1 (6)C18—C17—P—C23135.1 (3)
P—C11—C16—C15−178.3 (3)C22—C17—P—C23−46.8 (3)
C22—C17—C18—C191.5 (6)C12—C11—P—C3−110.7 (3)
P—C17—C18—C19179.6 (3)C16—C11—P—C367.4 (3)
C17—C18—C19—C20−2.7 (7)C12—C11—P—C1710.7 (4)
C18—C19—C20—C212.2 (8)C16—C11—P—C17−171.2 (3)
C19—C20—C21—C22−0.4 (7)C12—C11—P—C23126.7 (3)
C20—C21—C22—C17−0.9 (7)C16—C11—P—C23−55.2 (3)
C18—C17—C22—C210.3 (6)C28—C23—P—C329.6 (3)
P—C17—C22—C21−177.8 (3)C24—C23—P—C3−151.9 (3)
C28—C23—C24—C25−0.3 (5)C28—C23—P—C17−94.7 (3)
P—C23—C24—C25−178.8 (3)C24—C23—P—C1783.8 (3)
C23—C24—C25—C260.3 (6)C28—C23—P—C11148.6 (3)
C24—C25—C26—C27−0.1 (6)C24—C23—P—C11−32.9 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2239).

References

  • Augustin, M., Fischer, G., Schneider, B. & Kohler, M. (1979). J. Prakt. Chem. pp. 787–796.
  • Enraf–Nonius. (1989). CAD-4 Software Version 5. Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Mao, Y. Q., Maley, I. & Waston, W. H. (2005). J. Chem. Crystallogr.35, 385–403.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Trost, B. M. & Schmidt, T. (1988). J. Am. Chem. Soc.110, 2301–2303.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography