PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o585–o586.
Published online 2008 February 13. doi:  10.1107/S1600536807062812
PMCID: PMC2960847

A second polymorph of β-arteether

Abstract

The crystal structure of the title compound, C17H28O5, reported here is a polymorph of the structure first reported by El-Feraly, Al-Yahya, Orabi, McPhail & McPhail [J. Nat. Prod. (1992). 55, 878–883]. It is a derivative of the anti­malaria compound artemisinin and consists primarily of three substituted ring systems fused together. A cyclo­hexane ring (distorted chair conformation) fused to a tetra­hydro­pyran group (distorted chair) is adjacent to an oxacyclo­heptane unit containing an endo-peroxide bridge, giving the mol­ecule its particular three-dimensional arrangement. The crystal packing is stabilized by inter­molecular C—H(...)O inter­actions between an O atom from the endo-peroxide bridge and H atoms from both the cyclo­hexane and seven-membered oxacyclo­heptane fused rings, as well as between an O atom and H atom from adjacent tetra­hydro­pyran rings. The two polymorphs have the same space group and similar cell parameters for the a and b axes, but significantly different values for the c axis.

Related literature

For the first polymorph of this compound, see: El-Feraly et al. (1992 [triangle]). For crystal structures of similar compounds, see: Brossi et al. (1988 [triangle]); Flippen-Anderson et al. (1989 [triangle]); Karle & Lin (1995 [triangle]); Li et al. (2006 [triangle]); Luo et al. (1984 [triangle]); Yue et al. (2006 [triangle]); Butcher et al. (2007 [triangle]); Jasinski et al. (2008 [triangle]). For biological activity of artemisinin derivatives in vitro and in vivo, see: Grace et al. (1998 [triangle]); Li et al. (2001 [triangle]); Maggs et al. (2000 [triangle]); Yang et al. (1997 [triangle]). For endo-peroxide sesquiterpene lactone derivatives, see: Saxena et al. (2003 [triangle]); Venugopalan et al. (1995 [triangle]); Wu et al. (2001 [triangle]). For the synthesis of artemisinin and its derivatives, see: Lui et al. (1979 [triangle]); Liu (1980 [triangle]); Robert et al. (2001 [triangle]). For related literature, see: Cremer & Pople (1975 [triangle]); Lisgarten et al. (1998 [triangle]); Qinghaosu Research Group (1980 [triangle]); Shen & Zhuang (1984 [triangle]); Wu & Li (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o585-scheme1.jpg

Experimental

Crystal data

  • C17H28O5
  • M r = 312.39
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0o585-efi1.jpg
  • a = 10.0253 (6) Å
  • c = 28.628 (3) Å
  • V = 2491.8 (3) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 103 (2) K
  • 0.42 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.963, T max = 0.984
  • 27842 measured reflections
  • 4935 independent reflections
  • 4517 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.101
  • S = 1.04
  • 4935 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062812/at2510sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062812/at2510Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers. BN thanks Strides Arco Labs, Mangalore, India, for a gift sample of the title compound.

supplementary crystallographic information

Comment

Artemisinin and its derivatives, dihydroartemisinin, artemether, arteether and artesunate, are antimalarial drugs which possess bioactivity with reduced toxicity (Wu & Li, 1995). Artemisinin is isolated from the leaves of the plant Artemisia annua (Qinghao). It is a sesquiterpene lactone with an endo-peroxide linkage. Artemisinin derivatives are more potent than artemisinin and are active by virtue of the endo-peroxide. Because of their activity against strains of the parasite that had become resistant to conventional chloroquine therapy and the ability, due to the lipophilic structure, to cross the blood brain barrier, it was particularly effective for the deadly cerebral malaria (Shen & Zhuang, 1984). Because of their shorter lifetime and decreasing activity, they are used in combination with other antimalarial drugs. The notable activity of artemesinin derivatives in vitro and in vivo has been reported in the literature (Li et al. 2001 & Yang et al. 1997). However, some derivatives of artimisinine showed moderate cytotoxicity in vitro. The electronegativity and bulk of the substituents that are attached to the aryl group play an insignificant role in cytotoxicity. The antimalarial activity and cytotoxicity of some sesquiterpenoids has been reported in the literature (Venugopalan et al., 1995; Wu et al., 2001; Saxena et al., 2003). The endo-peroxide group present in these compounds plays an important role in antimalarial activity. Its 1,2,4-trioxane ring is unique in nature. After being opened in the plasmodium it liberates singlet oxygen and forms free radicals, which in turn produce oxidative damage of the parasite's membrane. Artemisinin is hydrophobic in nature and is partitioned into the membrane of the plasmodium. The crystal structure of an ether dimer of deoxydihydroqinghaosu, a potential metabolite of the antimalarial arteether, has been reported (Flippen-Anderson et al., 1989). The correlation of the crystal structures of diastereomeric artemisinin derivatives with their proton NMR spectra in CDCl3 has been reported (Karle & Lin, 1995). The crystal structure of artemisinin has been reported (Lisgarten et al., 1998). The crystal structure of a dimer of α- and β-dihydroartemisinin (Yue et al., 2006) and that of 9,10-dehydro-deoxyartemisin has recently been reported (Li et al., 2006). The synthesis of artemisinin and its derivatives have been described (Lui et al., 1979; Liu, 1980; Robert et al., 2001). β-Arteether (AE) is an endo-peroxide sesquiterpene lactone derivative currently being developed for the treatment of severe, complicated malaria caused by multidrug-resistant Plasmodium falciparum (Grace et al., 1998). β-Artemether (AM), the O-methyl ether prodrug of dihydroartemisinin (DHA), is an endo-peroxide antimalarial (Maggs et al., 2000). In view of the importance of the title compound, C17H28O5 (I), β-arteether, as an antimalarial drug, this paper describes a new polymorphic form of the crystal structure first reported by El-Feraly et al. (1992), from data measured at 103 (2) K.

A substantial increase in the length of the unit cell c axis from 25.720 to 28.628 Å in the new structure along with a redetermination of the cell constants and the cell volume for (I) at room temperature (296 K) [a = 10.1557 (14), c = 28.714 (4) Å and V = 2564.8 (8) Å3] provides solid support for the recognition of this new polymorphic form for (I). The six-membered cyclohexane ring (C1–C6) is a slightly distorted chair, with Cremer & Pople (1975) puckering parameters Q, θ and [var phi] of 0.563 (8) Å, 177.8 (2)° and 20.3 (1)°, respectively (Fig. 1). The tetrahydropyran group (C1/C2/C10–C12/O2) has also a slightly distorted chair conformation with puckering parameters Q, θ and [var phi] of 0.518 (5) Å, 176.8 (9)° and 16.9 (6)°, respectively. For an ideal chair θ has a value of 0 or 180°. Similar conformations were found in 9,10-dehydrodeoxyartemisinin (Shu-Hui Li et al., 2006). The seven-membered ring (C1/C6–C9/O1–C10) contains the important peroxy linkage [O3—O4 = 1.4759 (13) Å]. The six-membered ring C (O1/O3/O4/C1/C9/C10) which contains both an oxygen bridge and a peroxy bridge is best described by a twist-boat conformation with puckering parameters Q, θ and [var phi] of 0.749 (2) Å, 94.8 (5)° and 276.8 (8)°, respectively. For an ideal twist-boat conformation, θ and [var phi] are 90° and (60n + 30)°, respectively. This conformation is consistent with 9,10-dehydrodeoxyartemisinin (Li et al., 2006), dihydroartemisinin (Qinghaosu Research Group, 1980; Jasinski et al., 2008) and artemether (Butcher et al., 2007)

Crystal packing is stabilized by intermolecular C—H···O interactions between hydrogen atoms from the cyclohexane ring (H5A and H7A) and an oxygen atom (O4) from the endo-peroxide bridge (Fig. 2).

Experimental

The title compound (C17H28O5) was obtained in the pure form from Strides Arco Labs, Mangalore, India. X-ray diffraction quality crystals were grown from acetone [m.p.: 353 K]).

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.90–1.00 Å and Uiso(H) = 1.17–1.22Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
The molecular packing for (I) viewed down the c axis. Dashed lines indicate C–H···O intermolecular hydrogen bonds.

Crystal data

C17H28O5Z = 6
Mr = 312.39F000 = 1020
Trigonal, P3221Dx = 1.249 Mg m3
Hall symbol: P 32 2"Mo Kα radiation λ = 0.71073 Å
a = 10.0253 (6) ÅCell parameters from 5075 reflections
b = 10.0253 (6) Åθ = 2.4–30.0º
c = 28.628 (3) ŵ = 0.09 mm1
α = 90ºT = 103 (2) K
β = 90ºChunk, colourless
γ = 120º0.42 × 0.22 × 0.18 mm
V = 2491.8 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4935 independent reflections
Radiation source: fine-focus sealed tube4517 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 103(2) Kθmax = 30.8º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→14
Tmin = 0.963, Tmax = 0.984k = −14→14
27842 measured reflectionsl = −39→39

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4841P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max = 0.005
S = 1.05Δρmax = 0.38 e Å3
4935 reflectionsΔρmin = −0.17 e Å3
203 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2049 Friedel pairs
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.71973 (10)0.35233 (10)−0.03898 (3)0.01837 (18)
O20.57224 (11)0.39122 (11)0.01212 (3)0.01993 (19)
O30.47049 (10)0.15908 (12)−0.05520 (3)0.0219 (2)
O40.45576 (11)0.06611 (11)−0.01350 (3)0.02042 (19)
O50.60247 (12)0.45429 (11)0.09195 (3)0.02137 (19)
C10.58206 (14)0.15089 (14)0.01942 (4)0.0169 (2)
C20.50124 (14)0.12064 (15)0.06716 (4)0.0182 (2)
H2A0.42660.00750.06860.022*
C30.61370 (16)0.15728 (16)0.10811 (4)0.0222 (3)
H3A0.68480.26990.10970.027*
H3B0.55500.12460.13770.027*
C40.70709 (16)0.07586 (16)0.10279 (4)0.0232 (3)
H4A0.77880.10280.12950.028*
H4B0.6367−0.03700.10310.028*
C50.79822 (16)0.12223 (15)0.05735 (4)0.0213 (2)
H5A0.86580.23680.05740.026*
C60.68604 (15)0.07809 (14)0.01577 (4)0.0185 (2)
H6A0.6163−0.03600.01740.022*
C70.77196 (15)0.11190 (16)−0.03110 (4)0.0221 (3)
H7A0.86770.2129−0.02870.027*
H7B0.80240.0330−0.03610.027*
C80.68289 (16)0.11487 (16)−0.07417 (4)0.0235 (3)
H8A0.59350.0104−0.07910.028*
H8B0.75050.1408−0.10190.028*
C90.62470 (15)0.23007 (15)−0.07075 (4)0.0204 (2)
C100.66650 (14)0.32307 (14)0.00757 (4)0.0162 (2)
H10A0.75690.37760.02900.019*
C110.49721 (16)0.37047 (16)0.05576 (4)0.0204 (3)
H11A0.42390.41020.05270.024*
C120.40444 (15)0.20099 (16)0.06911 (4)0.0204 (2)
H12A0.32320.15060.04460.024*
C130.90173 (19)0.05086 (19)0.05316 (6)0.0329 (3)
H13A0.95840.06640.08240.049*
H13B0.97480.10020.02750.049*
H13C0.8382−0.05970.04690.049*
C140.62461 (17)0.30416 (18)−0.11675 (4)0.0270 (3)
H14A0.56510.3570−0.11350.040*
H14B0.57790.2247−0.14090.040*
H14C0.73080.3788−0.12560.040*
C150.68313 (17)0.61729 (15)0.08415 (5)0.0241 (3)
H15A0.61020.65130.07430.029*
H15B0.76120.64460.05930.029*
C160.7603 (2)0.69468 (18)0.12949 (5)0.0367 (4)
H16A0.82160.80630.12470.055*
H16B0.82770.65570.13980.055*
H16C0.68170.67220.15330.055*
C170.31881 (17)0.17746 (18)0.11531 (5)0.0279 (3)
H17A0.25120.22160.11300.042*
H17B0.39350.22860.14050.042*
H17C0.25690.06700.12200.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0161 (4)0.0163 (4)0.0141 (4)0.0017 (3)0.0008 (3)−0.0006 (3)
O20.0224 (5)0.0212 (4)0.0165 (4)0.0111 (4)0.0022 (3)0.0025 (3)
O30.0158 (4)0.0247 (5)0.0149 (4)0.0025 (4)−0.0014 (3)0.0020 (3)
O40.0157 (4)0.0187 (4)0.0149 (4)−0.0004 (3)−0.0015 (3)0.0003 (3)
O50.0256 (5)0.0165 (4)0.0181 (4)0.0076 (4)−0.0010 (4)−0.0004 (3)
C10.0143 (5)0.0152 (5)0.0134 (5)0.0015 (4)−0.0007 (4)−0.0012 (4)
C20.0159 (5)0.0161 (5)0.0150 (5)0.0024 (5)0.0003 (4)0.0006 (4)
C30.0255 (6)0.0191 (6)0.0163 (5)0.0068 (5)−0.0032 (5)0.0007 (4)
C40.0220 (6)0.0184 (6)0.0217 (6)0.0046 (5)−0.0041 (5)0.0046 (5)
C50.0181 (6)0.0150 (5)0.0260 (6)0.0045 (5)−0.0020 (5)0.0039 (5)
C60.0168 (6)0.0124 (5)0.0208 (5)0.0031 (4)0.0015 (4)0.0007 (4)
C70.0187 (6)0.0177 (6)0.0246 (6)0.0052 (5)0.0040 (5)−0.0009 (5)
C80.0209 (6)0.0209 (6)0.0200 (6)0.0040 (5)0.0019 (5)−0.0044 (5)
C90.0167 (6)0.0201 (6)0.0145 (5)0.0019 (5)0.0004 (4)−0.0014 (4)
C100.0158 (5)0.0142 (5)0.0142 (5)0.0041 (4)−0.0009 (4)0.0001 (4)
C110.0202 (6)0.0210 (6)0.0171 (5)0.0083 (5)−0.0007 (4)−0.0009 (4)
C120.0175 (5)0.0218 (6)0.0164 (5)0.0058 (5)0.0007 (4)−0.0004 (5)
C130.0279 (8)0.0321 (8)0.0408 (8)0.0166 (7)0.0010 (6)0.0085 (6)
C140.0254 (7)0.0309 (7)0.0147 (5)0.0066 (6)−0.0010 (5)0.0006 (5)
C150.0282 (7)0.0160 (6)0.0243 (6)0.0082 (5)0.0009 (5)0.0022 (5)
C160.0504 (10)0.0186 (7)0.0300 (7)0.0090 (7)−0.0053 (7)−0.0018 (6)
C170.0240 (7)0.0294 (7)0.0229 (6)0.0079 (6)0.0055 (5)−0.0007 (5)

Geometric parameters (Å, °)

O1—C101.4105 (14)C7—H7A0.990
O1—C91.4386 (15)C7—H7B0.990
O2—C111.4192 (15)C8—C91.536 (2)
O2—C101.4221 (15)C8—H8A0.990
O3—C91.4122 (16)C8—H8B0.990
O3—O41.4759 (13)C9—C141.5122 (17)
O4—C11.4619 (14)C10—H10A1.000
O5—C111.4163 (15)C11—C121.5224 (18)
O5—C151.4327 (16)C11—H11A1.000
C1—C101.5330 (16)C12—C171.5295 (17)
C1—C21.5399 (16)C12—H12A1.000
C1—C61.5462 (18)C13—H13A0.980
C2—C31.5382 (17)C13—H13B0.980
C2—C121.5412 (19)C13—H13C0.980
C2—H2A1.000C14—H14A0.980
C3—C41.526 (2)C14—H14B0.980
C3—H3A0.990C14—H14C0.980
C3—H3B0.990C15—C161.512 (2)
C4—C51.5225 (18)C15—H15A0.990
C4—H4A0.990C15—H15B0.990
C4—H4B0.990C16—H16A0.980
C5—C131.532 (2)C16—H16B0.980
C5—C61.5427 (18)C16—H16C0.980
C5—H5A1.000C17—H17A0.980
C6—C71.5380 (17)C17—H17B0.980
C6—H6A1.000C17—H17C0.980
C7—C81.5315 (19)
C10—O1—C9113.55 (9)O3—C9—C14104.63 (11)
C11—O2—C10116.17 (9)O1—C9—C14107.15 (11)
C9—O3—O4108.17 (9)O3—C9—C8111.90 (11)
C1—O4—O3111.72 (8)O1—C9—C8110.02 (10)
C11—O5—C15113.02 (10)C14—C9—C8114.05 (11)
O4—C1—C10110.01 (10)O1—C10—O2105.06 (9)
O4—C1—C2103.89 (9)O1—C10—C1112.44 (9)
C10—C1—C2110.98 (10)O2—C10—C1113.28 (10)
O4—C1—C6105.93 (9)O1—C10—H10A108.6
C10—C1—C6113.17 (10)O2—C10—H10A108.6
C2—C1—C6112.30 (10)C1—C10—H10A108.6
C3—C2—C1112.25 (10)O5—C11—O2111.96 (11)
C3—C2—C12115.18 (10)O5—C11—C12109.68 (10)
C1—C2—C12109.64 (10)O2—C11—C12111.59 (11)
C3—C2—H2A106.4O5—C11—H11A107.8
C1—C2—H2A106.4O2—C11—H11A107.8
C12—C2—H2A106.4C12—C11—H11A107.8
C4—C3—C2111.63 (11)C11—C12—C17111.82 (12)
C4—C3—H3A109.3C11—C12—C2112.41 (10)
C2—C3—H3A109.3C17—C12—C2113.72 (11)
C4—C3—H3B109.3C11—C12—H12A106.1
C2—C3—H3B109.3C17—C12—H12A106.1
H3A—C3—H3B108.0C2—C12—H12A106.1
C5—C4—C3110.91 (11)C5—C13—H13A109.5
C5—C4—H4A109.5C5—C13—H13B109.5
C3—C4—H4A109.5H13A—C13—H13B109.5
C5—C4—H4B109.5C5—C13—H13C109.5
C3—C4—H4B109.5H13A—C13—H13C109.5
H4A—C4—H4B108.0H13B—C13—H13C109.5
C4—C5—C13111.57 (11)C9—C14—H14A109.5
C4—C5—C6109.36 (11)C9—C14—H14B109.5
C13—C5—C6111.87 (12)H14A—C14—H14B109.5
C4—C5—H5A108.0C9—C14—H14C109.5
C13—C5—H5A108.0H14A—C14—H14C109.5
C6—C5—H5A108.0H14B—C14—H14C109.5
C7—C6—C5111.24 (11)O5—C15—C16107.69 (11)
C7—C6—C1112.97 (10)O5—C15—H15A110.2
C5—C6—C1112.30 (10)C16—C15—H15A110.2
C7—C6—H6A106.6O5—C15—H15B110.2
C5—C6—H6A106.6C16—C15—H15B110.2
C1—C6—H6A106.6H15A—C15—H15B108.5
C8—C7—C6116.04 (11)C15—C16—H16A109.5
C8—C7—H7A108.3C15—C16—H16B109.5
C6—C7—H7A108.3H16A—C16—H16B109.5
C8—C7—H7B108.3C15—C16—H16C109.5
C6—C7—H7B108.3H16A—C16—H16C109.5
H7A—C7—H7B107.4H16B—C16—H16C109.5
C7—C8—C9114.06 (11)C12—C17—H17A109.5
C7—C8—H8A108.7C12—C17—H17B109.5
C9—C8—H8A108.7H17A—C17—H17B109.5
C7—C8—H8B108.7C12—C17—H17C109.5
C9—C8—H8B108.7H17A—C17—H17C109.5
H8A—C8—H8B107.6H17B—C17—H17C109.5
O3—C9—O1108.78 (10)
C9—O3—O4—C145.64 (12)O4—O3—C9—C848.52 (12)
O3—O4—C1—C1015.48 (13)C10—O1—C9—O331.99 (14)
O3—O4—C1—C2134.33 (10)C10—O1—C9—C14144.59 (11)
O3—O4—C1—C6−107.17 (10)C10—O1—C9—C8−90.91 (12)
O4—C1—C2—C3162.62 (10)C7—C8—C9—O3−95.86 (13)
C10—C1—C2—C3−79.19 (13)C7—C8—C9—O125.20 (14)
C6—C1—C2—C348.60 (14)C7—C8—C9—C14145.62 (12)
O4—C1—C2—C12−68.02 (12)C9—O1—C10—O2−93.06 (11)
C10—C1—C2—C1250.16 (12)C9—O1—C10—C130.57 (14)
C6—C1—C2—C12177.96 (10)C11—O2—C10—O1176.80 (9)
C1—C2—C3—C4−52.31 (14)C11—O2—C10—C153.70 (13)
C12—C2—C3—C4−178.73 (10)O4—C1—C10—O1−55.59 (13)
C2—C3—C4—C558.53 (14)C2—C1—C10—O1−170.00 (10)
C3—C4—C5—C13175.80 (11)C6—C1—C10—O162.68 (12)
C3—C4—C5—C6−59.90 (14)O4—C1—C10—O263.33 (12)
C4—C5—C6—C7−175.83 (11)C2—C1—C10—O2−51.08 (12)
C13—C5—C6—C7−51.70 (14)C6—C1—C10—O2−178.40 (9)
C4—C5—C6—C156.44 (13)C15—O5—C11—O261.59 (14)
C13—C5—C6—C1−179.43 (10)C15—O5—C11—C12−173.97 (11)
O4—C1—C6—C769.20 (12)C10—O2—C11—O569.63 (13)
C10—C1—C6—C7−51.41 (13)C10—O2—C11—C12−53.74 (14)
C2—C1—C6—C7−178.04 (10)O5—C11—C12—C1757.32 (15)
O4—C1—C6—C5−163.99 (9)O2—C11—C12—C17−178.03 (11)
C10—C1—C6—C575.39 (12)O5—C11—C12—C2−72.01 (13)
C2—C1—C6—C5−51.23 (13)O2—C11—C12—C252.64 (14)
C5—C6—C7—C8−164.04 (11)C3—C2—C12—C1175.94 (13)
C1—C6—C7—C8−36.68 (15)C1—C2—C12—C11−51.80 (13)
C6—C7—C8—C956.69 (15)C3—C2—C12—C17−52.41 (15)
O4—O3—C9—O1−73.25 (12)C1—C2—C12—C17179.85 (10)
O4—O3—C9—C14172.50 (10)C11—O5—C15—C16166.33 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O4i1.002.453.3150 (15)144
C7—H7A···O4i0.992.553.4704 (16)155

Symmetry codes: (i) y+1, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2510).

References

  • Brossi, A., Venugopalan, B., Dominguez Gerpe, L., Yeh, H. J. C., Flippen-Anderson, J. L., Buchs, P., Luo, X. D., Milhousand, W. & Peters, W. (1988). J. Med. Chem.31, 645–650. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3291–o3292.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • El-Feraly, F. S., Al-Yahya, M. A., Orabi, K. Y., McPhail, D. R. & McPhail, A. T. (1992). J. Nat. Prod.55, 878–883.
  • Flippen-Anderson, J. L., George, C., Gilardi, R., Yu, Q.-S., Dominguez, L. & Brossi, A. (1989). Acta Cryst. C45, 292–294. [PubMed]
  • Grace, J. M., Aguilar, A. J., Trotman, K. M. & Brewer, T. G. (1998). Drug Metab. Dispos.26, 313–317. [PubMed]
  • Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008). Acta Cryst. E64, o89–o90. [PMC free article] [PubMed]
  • Karle, J. M. & Lin, Ai. J. (1995). Acta Cryst. B51, 1063–1068.
  • Li, Y., Shan, F., Wu, J. M., Wu, G. S., Ding, J., Xiao, D., Yang, W. Y., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Bioorg. Med. Chem. Lett.11, 5–8. [PubMed]
  • Li, S.-H., Yue, Z.-Y., Gao, P. & Yan, P.-F. (2006). Acta Cryst. E62, o1898–o1900.
  • Lisgarten, J., Potter, B. S., Bantuzeko, C. & Palmer, A. (1998). J. Chem. Crystallogr.28, 539–542.
  • Liu, X. (1980). Chin. Pharm. Bull.15, 183–183.
  • Lui, J.-M., Ni, M.-Y., Fan, Y.-E., Tu, Y.-Y., Wu, Z.-H., Wu, Y.-L. & Chou, W.-S. (1979). Acta Chim. Sinica, 37, 129–141.
  • Luo, X. D., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gillardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522.
  • Maggs, J. L., Bishop, L. P. D., Edwards, G., O’Neill, P. M., Ward, S. A., Winstanley, P. A. & Park, K. (2000). Drug Metab. Dispos.28, 209–217. [PubMed]
  • Qinghaosu Research Group (1980). Sci. Sin. (Engl. Ed.), 23, 380–396.
  • Robert, A., Benoit-Vical, F., Dechy-Cabaret, O. & Meunier, B. (2001). Pure Appl. Chem.73, 1173–1188.
  • Saxena, S., Pant, N., Jain, D. C. & Bhakuni, R. S. (2003). Curr. Sci.85, 1314–1329.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, C. C. & Zhuang, L. (1984). Med. Res. Rev.4, 57–59. [PubMed]
  • Venugopalan, B., Karnik, P. J., Bapat, C. J., Chatterjee, D. K., Iyer, N. & Lepcha, D. (1995). Eur. J. Med. Chem.30, 697–706.
  • Wu, Y.-L. & Li, Y. (1995). Med. Chem. Res.5, 569–586.
  • Wu, J. M., Shan, F., Wu, G. S., Ying, L., Ding, J., Xiao, D., Han, J.-X., Atassi, G., Leonce, S., Caignard, D. H. & Renard, P. (2001). Eur. J. Med. Chem.36, 469–479. [PubMed]
  • Yang, X. P., Pan, Q. C., Liang, Y.-G. & Zikang, Y.-L. (1997). Cancer, 16, 186–187.
  • Yue, Z.-Y., Li, S.-H., Gao, P., Zhang, J.-H. & Yan, P.-F. (2006). Acta Cryst. C62, o281–o282. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography