PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): i20.
Published online 2008 February 13. doi:  10.1107/S1600536808003851
PMCID: PMC2960843

Tetra­potassium cis-dioxido-trans-bis­(sulfato-κO)sulfato(κ2 O,O′)molybdate(VI)

Abstract

The title compound, K4[MoVIO2(SO4)3], was precipitated from a melt of molybdenum(VI) oxide and potassium sulfate in potassium disulfate. The compound contains monomeric [MoVIO2(SO4)3]4− anions, with the MoVI atom, both oxide ligands, and the S atom and both ligating O atoms of the bidentate sulfate group lying on a crystallographic mirror plane. One of the potassium cations is nine-coordinate, while the other is eight-coordinate.

Related literature

For related literature, see: Topsøe & Nielsen (1947 [triangle]); Berg & Thorup (2005 [triangle]); Borup et al. (1990 [triangle]); Nørbygaard et al. (1998 [triangle]); Nielsen et al. (1993 [triangle]); Rasmussen et al. (2003 [triangle]); Salles et al. (1996 [triangle]); Schäffer & Berg (2005 [triangle]); Tamasi & Cini (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00i20-scheme1.jpg

Experimental

Crystal data

  • K4[MoO2(SO4)3]
  • M r = 572.52
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i20-efi1.jpg
  • a = 7.5931 (5) Å
  • b = 17.1276 (11) Å
  • c = 10.5132 (7) Å
  • V = 1367.26 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.71 mm−1
  • T = 120 (2) K
  • 0.28 × 0.18 × 0.07 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: Gaussian (XPREP; Bruker, 2002 [triangle]) T min = 0.512, T max = 0.684
  • 16179 measured reflections
  • 1693 independent reflections
  • 1681 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016
  • wR(F 2) = 0.041
  • S = 1.11
  • 1693 reflections
  • 110 parameters
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003851/bi2277sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003851/bi2277Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Astrid Schønberg and Bodil Holten for help and advice.

supplementary crystallographic information

Comment

Efforts to improve the industrial vanadium-based sulfuric acid catalyst (Topsøe & Nielsen, 1947) have led to investigations of potassium disulfate's use as a suitable solvent for the production of new sulfate-containing catalysts. Many of the previously reported sulfato compounds precipitated from melts of potassium disulfate contain polymeric anions (Nørbygaard et al., 1998, Berg & Thorup, 2005), while some contain dimers (Nielsen et al., 1993, Rasmussen et al., 2003, Schäffer & Berg, 2005). Monomers such as that in the title compound (Fig. 1) are less common (Borup et al., 1990).

The coordination sphere of the MoVI atom contains two oxido ligands, two terminally bound sulfato ligands, and a bidentate sulfato ligand. Because of the bidentate ligand, the coordination sphere angles (see Table 1) in the mirror plane are grossly distorted from octahedral. The O3—Mo1—O4 angle is only 63.43 (6)°, while the O1—Mo1—O2 angle opposite to it is 105.77 (10)°. Deviations of 10° or less are found for the other angles between cis O atoms. The Mo=O bond distances are nearly equivalent (1.6883 (18)Å & 1.6889 (18) Å), which is expected since both bonds are trans to O atoms in the bidentate sulfato ligand. The Mo—O distance to the terminal sulfato [Mo1—O6] is slightly shorter than those to the bidentate sulfato ligand [Mo1—O3 and Mo1—O4]. The Mo—O distances compare well with previously reported values (Salles et al., 1996, Nørbygaard et al., 1998).

The S—O bond distances of 1.5044 (17)–1.5532 (17)Å involving O bound to Mo are longer than the terminal S—O bond lengths of 1.4497–1.4621 (12) Å, an effect typical for sulfato complexes of many different transition metal centers (Borup et al., 1990, Nielsen et al., 1993, Berg & Thorup, 2005). The sulfato ligands have approximately tetrahedral geometry. The angles vary from 101.14° for O3—S1—O4 to 114.68 (10)° for O5—S1—O5i [symmetry code (i): x, 1/2 - y, z]; both extremes involve the bidentate sulfato ligand. Five of the eight remaining independent O—S—O angles deviate by less than 2° from ideal. The potassium cation, K1, is nine-coordinate, while K2 is eight-coordinate. The K—O distances range from 2.6408 to 3.2305 (14) Å.

Experimental

Crystals were grown from a melt of 28.0 mol% molybdenum(VI) oxide, 43.9 mol% potassium sulfate, and 28.1 mol% potassium disulfate, using a method described previously (Nørbygaard et al., 1998).

Refinement

(type here to add refinement details)

Figures

Fig. 1.
The [MoVIO2(SO4)3]4- anion and four K+ cations, showing displacement ellipsoids at 50% probability.
Fig. 2.
The crystal packing, viewed along the a axis.

Crystal data

K4[MoO2(SO4)3]F000 = 1112
Mr = 572.52Dx = 2.781 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 9999 reflections
a = 7.5931 (5) Åθ = 2.3–28.0º
b = 17.1276 (11) ŵ = 2.71 mm1
c = 10.5132 (7) ÅT = 120 (2) K
V = 1367.26 (16) Å3Tabular, colorless
Z = 40.28 × 0.18 × 0.08 mm

Data collection

Bruker SMART APEX CCD diffractometer1693 independent reflections
Radiation source: normal-focus sealed tube1681 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 120(2) Kθmax = 28.0º
ω scansθmin = 2.3º
Absorption correction: gaussian(XPREP; Bruker, 2002)h = −9→10
Tmin = 0.512, Tmax = 0.684k = −22→22
16179 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0174P)2 + 1.7854P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max < 0.001
wR(F2) = 0.041Δρmax = 0.59 e Å3
S = 1.11Δρmin = −0.46 e Å3
1693 reflectionsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.00164 (15)
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Five series of frames were filtered for statistical outliers then corrected for absorption using XPREP in SHELXTL (Sheldrick, 2008) before using SAINT & SADABS (Bruker, 2002) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay, and none was observed.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
K10.43682 (4)0.08865 (2)−0.24076 (3)0.01208 (8)
K20.25655 (5)0.10844 (2)0.39352 (3)0.01644 (9)
Mo10.32312 (3)0.25000.065899 (18)0.00961 (7)
S10.62301 (7)0.2500−0.09790 (5)0.00926 (11)
S20.23382 (5)0.06574 (2)0.06161 (3)0.00949 (9)
O10.3105 (3)0.25000.22628 (17)0.0209 (4)
O20.1129 (2)0.25000.0135 (2)0.0219 (4)
O30.4316 (2)0.2500−0.13493 (15)0.0124 (3)
O40.6095 (2)0.25000.04687 (15)0.0102 (3)
O50.70888 (16)0.17874 (7)−0.13903 (11)0.0135 (2)
O60.36968 (15)0.13324 (7)0.05145 (11)0.0134 (2)
O70.16034 (17)0.05557 (8)−0.06586 (11)0.0161 (3)
O80.10253 (17)0.08813 (8)0.15593 (12)0.0184 (3)
O90.33322 (16)−0.00276 (7)0.10186 (13)0.0176 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
K10.01082 (17)0.01361 (16)0.01182 (16)0.00149 (12)−0.00089 (12)0.00023 (12)
K20.02176 (19)0.01335 (17)0.01422 (17)0.00508 (14)0.00204 (14)−0.00023 (13)
Mo10.00891 (10)0.00789 (10)0.01203 (11)0.0000.00220 (7)0.000
S10.0105 (2)0.0077 (2)0.0096 (2)0.0000.0013 (2)0.000
S20.01081 (18)0.00829 (17)0.00938 (18)−0.00132 (14)0.00002 (13)0.00071 (13)
O10.0304 (11)0.0172 (9)0.0150 (9)0.0000.0080 (8)0.000
O20.0117 (8)0.0178 (9)0.0364 (11)0.000−0.0020 (8)0.000
O30.0119 (8)0.0139 (8)0.0115 (7)0.000−0.0019 (6)0.000
O40.0115 (8)0.0102 (7)0.0089 (7)0.0000.0001 (6)0.000
O50.0158 (6)0.0095 (5)0.0153 (6)0.0017 (4)0.0044 (5)−0.0012 (4)
O60.0116 (5)0.0088 (5)0.0197 (6)−0.0019 (4)0.0022 (5)−0.0001 (4)
O70.0187 (6)0.0186 (6)0.0111 (6)−0.0037 (5)−0.0034 (4)0.0017 (4)
O80.0163 (6)0.0201 (6)0.0187 (6)−0.0045 (5)0.0072 (5)−0.0055 (5)
O90.0181 (6)0.0116 (6)0.0232 (6)−0.0002 (5)−0.0046 (5)0.0058 (5)

Geometric parameters (Å, °)

Mo1—O11.6889 (18)K2—O8vi2.7005 (14)
Mo1—O21.6883 (18)K2—O4vii2.7419 (8)
Mo1—O32.2665 (17)K2—O82.7799 (14)
Mo1—O42.1837 (16)K2—O5vii2.8710 (13)
Mo1—O62.0365 (12)K2—O7viii2.9106 (14)
Mo1—O6i2.0365 (12)K2—O9viii2.9220 (14)
S1—O31.5044 (17)K2—O13.0229 (11)
S1—O41.5254 (16)K2—O6vii3.0239 (13)
S1—O51.4497 (12)O1—K2i3.0229 (11)
S1—O5i1.4497 (12)O3—K1i2.9794 (7)
S2—O61.5532 (12)O4—K2ix2.7419 (8)
S2—O71.4621 (12)O4—K2vi2.7419 (8)
S2—O81.4575 (13)O5—K1iii2.6408 (12)
S2—O91.4577 (12)O5—K2vi2.8710 (13)
K1—O5ii2.6408 (12)O6—K2vi3.0239 (13)
K1—O7iii2.7083 (12)O7—K1ii2.7083 (12)
K1—O9iv2.7102 (12)O7—K2v2.9106 (14)
K1—O52.7915 (13)O8—K2vii2.7005 (14)
K1—O72.8476 (13)O8—K1viii3.2305 (14)
K1—O32.9794 (7)O9—K1iv2.7102 (12)
K1—O9v3.0176 (13)O9—K2v2.9220 (13)
K1—O63.2064 (12)O9—K1viii3.0176 (13)
K1—O8v3.2305 (14)
O5ii—K1—O7iii100.00 (4)O1—Mo1—O6i94.84 (4)
O5ii—K1—O9iv175.76 (4)O6—Mo1—O6i158.22 (7)
O7iii—K1—O9iv83.52 (4)O2—Mo1—O4155.71 (8)
O5ii—K1—O5110.20 (4)O1—Mo1—O498.52 (8)
O7iii—K1—O586.53 (4)O6—Mo1—O479.65 (3)
O9iv—K1—O567.47 (4)O6i—Mo1—O479.65 (3)
O5ii—K1—O786.68 (4)O2—Mo1—O392.29 (8)
O7iii—K1—O7154.84 (5)O1—Mo1—O3161.94 (8)
O9iv—K1—O791.09 (4)O6—Mo1—O382.38 (3)
O5—K1—O7114.09 (4)O6i—Mo1—O382.38 (3)
O5ii—K1—O368.16 (4)O4—Mo1—O363.43 (6)
O7iii—K1—O3118.86 (4)O3—S1—O4101.14 (9)
O9iv—K1—O3108.11 (4)O5—S1—O5i114.68 (10)
O5—K1—O349.76 (4)O5—S1—O3110.93 (6)
O7—K1—O386.20 (4)O5i—S1—O3110.93 (6)
O5ii—K1—O9v64.98 (4)O5—S1—O4109.14 (6)
O7iii—K1—O9v84.97 (4)O5i—S1—O4109.14 (6)
O9iv—K1—O9v117.94 (5)O8—S2—O9111.62 (8)
O5—K1—O9v169.23 (4)O8—S2—O7113.20 (8)
O7—K1—O9v75.89 (4)O9—S2—O7111.58 (8)
O3—K1—O9v130.39 (4)O8—S2—O6107.77 (7)
O5ii—K1—O6102.42 (4)O9—S2—O6105.97 (7)
O7iii—K1—O6150.31 (4)O7—S2—O6106.20 (7)
O9iv—K1—O673.47 (4)Mo1—O1—K2i126.04 (3)
O5—K1—O667.60 (3)Mo1—O1—K2126.04 (3)
O7—K1—O646.49 (3)K2i—O1—K2106.66 (6)
O3—K1—O654.49 (4)S1—O3—Mo196.32 (8)
O9v—K1—O6122.24 (3)S1—O3—K194.81 (4)
O5ii—K1—O8v109.03 (4)Mo1—O3—K1110.65 (3)
O7iii—K1—O8v67.02 (4)S1—O3—K1i94.81 (4)
O9iv—K1—O8v74.46 (4)Mo1—O3—K1i110.65 (3)
O5—K1—O8v135.67 (3)K1—O3—K1i136.12 (6)
O7—K1—O8v87.85 (4)S1—O4—Mo199.11 (8)
O3—K1—O8v173.55 (4)S1—O4—K2ix101.58 (4)
O9v—K1—O8v45.24 (3)Mo1—O4—K2ix112.62 (4)
O6—K1—O8v122.05 (3)S1—O4—K2vi101.58 (4)
O8vi—K2—O4vii123.65 (4)Mo1—O4—K2vi112.62 (4)
O8vi—K2—O8102.72 (3)K2ix—O4—K2vi124.32 (6)
O4vii—K2—O898.32 (4)S1—O5—K1iii158.35 (7)
O8vi—K2—O5vii110.47 (4)S1—O5—K1104.29 (6)
O4vii—K2—O5vii51.12 (4)K1iii—O5—K188.78 (4)
O8—K2—O5vii143.83 (4)S1—O5—K2vi98.14 (6)
O8vi—K2—O7viii72.12 (4)K1iii—O5—K2vi95.88 (4)
O4vii—K2—O7viii155.26 (4)K1—O5—K2vi101.88 (4)
O8—K2—O7viii95.87 (4)S2—O6—Mo1127.63 (7)
O5vii—K2—O7viii107.47 (3)S2—O6—K2vi121.83 (6)
O8vi—K2—O9viii106.95 (4)Mo1—O6—K2vi107.00 (5)
O4vii—K2—O9viii106.35 (4)S2—O6—K189.66 (5)
O8—K2—O9viii119.86 (4)Mo1—O6—K1109.45 (5)
O5vii—K2—O9viii63.67 (3)K2vi—O6—K189.74 (3)
O7viii—K2—O9viii48.91 (3)S2—O7—K1ii154.47 (8)
O8vi—K2—O181.93 (5)S2—O7—K1106.67 (6)
O4vii—K2—O158.59 (4)K1ii—O7—K186.31 (3)
O8—K2—O168.58 (4)S2—O7—K2v99.59 (6)
O5vii—K2—O1101.75 (4)K1ii—O7—K2v103.16 (4)
O7viii—K2—O1146.11 (4)K1—O7—K2v86.41 (4)
O9viii—K2—O1164.67 (4)S2—O8—K2vii124.63 (7)
O8vi—K2—O6vii179.32 (4)S2—O8—K2110.89 (7)
O4vii—K2—O6vii55.70 (4)K2vii—O8—K2124.48 (5)
O8—K2—O6vii77.34 (4)S2—O8—K1viii92.60 (6)
O5vii—K2—O6vii69.31 (3)K2vii—O8—K1viii95.48 (4)
O7viii—K2—O6vii108.55 (3)K2—O8—K1viii81.61 (4)
O9viii—K2—O6vii73.56 (3)S2—O9—K1iv157.94 (8)
O1—K2—O6vii97.48 (4)S2—O9—K2v99.22 (6)
O2—Mo1—O1105.77 (10)K1iv—O9—K2v102.59 (4)
O2—Mo1—O698.04 (4)S2—O9—K1viii101.52 (6)
O1—Mo1—O694.84 (4)K1iv—O9—K1viii82.98 (3)
O2—Mo1—O6i98.04 (4)K2v—O9—K1viii87.16 (3)

Symmetry codes: (i) x, −y+1/2, z; (ii) x−1/2, y, −z−1/2; (iii) x+1/2, y, −z−1/2; (iv) −x+1, −y, −z; (v) −x+1/2, −y, z−1/2; (vi) x+1/2, y, −z+1/2; (vii) x−1/2, y, −z+1/2; (viii) −x+1/2, −y, z+1/2; (ix) x+1/2, −y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2277).

References

  • Berg, R. W. & Thorup, N. (2005). Inorg. Chem.44, 3485–3493. [PubMed]
  • Borup, F., Berg, R. W. & Nielsen, K. (1990). Acta Chem. Scand.44, 328–331.
  • Bruker (2002). SMART,SAINTandXPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Nielsen, K., Fehrmann, R. & Eriksen, K. M. (1993). Inorg. Chem.32, 4825–4828.
  • Nørbygaard, T., Berg, R. W. & Nielsen, K. (1998). Molten Salts XI Electrochem. Soc. Proc.98–11, 553–565.
  • Rasmussen, S. B., Rasmussen, R. M., Fehrmann, R. & Nielsen, K. (2003). Inorg. Chem.42, 7123–7128. [PubMed]
  • Salles, L., Robert, F., Semmer, V., Jeannin, Y. & Bregeault, J. (1996). Bull. Soc. Chim. Fr.133, 319–328.
  • Schäffer, S. J. C. & Berg, R. W. (2005). Acta Cryst. E61, i49–i51.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tamasi, G. & Cini, R. (2003). Dalton Trans. pp. 2928–2936.
  • Topsøe, H. F. A. & Nielsen, A. (1947). Trans. Dan. Akad. Technol. Sci.1, 18–24.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography