PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m460–m461.
Published online 2008 February 6. doi:  10.1107/S1600536808003747
PMCID: PMC2960841

Bis(4-fluoro­benzoato-κ2 O,O′)bis­(nicotinamide-κN 1)zinc(II) monohydrate

Abstract

The title compound, [Zn(C7H4FO2)2(C6H6N2O)2]·H2O, is a monomeric complex. It contains two 4-fluoro­benzoate and two nicotinamide ligands and one uncoordinated water mol­ecule. The 4-fluoro­benzoates act as bidentate chelating ligands, while the nicotinamides are monodentate. The six-coordinate geometry around the ZnII atom may be described as highly distorted octa­hedral, with the two nicotinamide ligands arranged cis. Inter­molecular O—H(...)O and N—H(...)O hydrogen bonds link the mol­ecules into a supra­molecular structure.

Related literature

For general background, see: Adiwidjaja et al. (1978 [triangle]); Amiraslanov et al. (1979 [triangle]); Antsyshkina et al. (1980 [triangle]); Bigoli et al. (1972 [triangle]); Day & Selbin (1969 [triangle]); Krishnamachari (1974 [triangle]); Nadzhafov, Shnulin & Mamedov (1981 [triangle]); Shnulin et al. (1981 [triangle]). For related structures, see: Amiraslanov et al. (1980 [triangle]); Capilla & Aranda (1979 [triangle]); Clegg et al. (1986a [triangle],b [triangle], 1987 [triangle]); Guseinov et al. (1984 [triangle]); Hökelek et al. (2007 [triangle]); Hökelek & Necefoğlu (1996 [triangle], 2001 [triangle]); Nadzhafov, Usubaliev et al. (1981 [triangle]); Necefoğlu et al. (2002 [triangle]); Niekerk et al. (1953 [triangle]); Usubaliev et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m460-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H4FO2)2(C6H6N2O)2]·H2O
  • M r = 605.87
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m460-efi1.jpg
  • a = 8.2363 (2) Å
  • b = 12.3711 (2) Å
  • c = 14.8971 (3) Å
  • α = 113.178 (14)°
  • β = 99.015 (17)°
  • γ = 99.465 (16)°
  • V = 1334.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 294 (2) K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.735, T max = 0.816
  • 5794 measured reflections
  • 5401 independent reflections
  • 4454 reflections with I > 2σ(I)
  • R int = 0.058
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.152
  • S = 1.14
  • 5401 reflections
  • 368 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003747/hy2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003747/hy2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

supplementary crystallographic information

Comment

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). The structural functions and coordination relationships of the arylcarboxylate ion in zinc(II) complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Antsyshkina et al., 1980; Amiraslanov et al., 1979; Nadzhafov, Shnulin & Mamedov, 1981; Shnulin et al., 1981).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Clegg et al., 1986a; Guseinov et al., 1984), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discerete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (Niekerk et al., 1953; Usubaliev et al., 1992). The structures of several complexes obtained by reacting ZnII with NA and DENA have been determined in our laboratory, including those of [Zn(C7H4FO2)2(DENA)2(H2O)2], (II), (Hökelek et al., 2007), [Zn(C7H5O3)2(NA)2], (III), (Necefoğlu et al., 2002), [Zn(C7H5O3)(OH2)3(NA)].C7O3H5, (IV), (Hökelek & Necefoğlu, 2001), [Zn2(C7H5O3)4(DENA)2(H2O)2], (V), (Hökelek & Necefoğlu, 1996). In (III), one of the 4-hydroxybenzoate ions acts as bidentate ligand, while the other one is monodentate, but in (V), two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging two Zn atoms. The structure determination of the title compound, (I), a zinc(II) complex with two fluorobenzoate (FB), two NA ligands and one uncoordinated water molecule, was undertaken in order to determine the properties of the FB and NA ligands and also to compare the results obtained with those reported previously.

In the monomeric title complex, the ZnII atom is coordinated by two NA and two FB ligands. Two FB ions act as bidentate ligands, while two NA molecules are monodentate ligands (Fig. 1). Besides four short coordination bonds, the close contact of the O4 atom with the Zn atom [Zn···O4 = 2.458 (3) Å] may be considered to give the fifth coordination bond, as in (III) [Zn···O4 = 2.404 (2) Å]; this distance is much greater than the sum of the corresponding ionic radii (2.14 Å; Day & Selbin, 1969). Similar reported Zn···O contacts are 2.50 (1) Å in [Zn(n-HOC6H4COO)2(C5H5N)2].2C5H5N (Nadzhafov, Usubaliev et al., 1981) and 2.494 (8) Å in [Zn(p-H2NC6H4COO)2]n.1.5nH2O (Amiraslanov et al., 1980). On the other hand, the Zn···O2 distance [2.564 (3) Å] in (I) may also be considered as a coordination bond, although it is weak. Thus, the six-coordination geometry around the ZnII atom may be described as highly distorted octahedral (Table 1), with the two nicotinamide ligands arranged cis.

In the binuclear complex (V), the average Zn—O bond length [1.953 (2) Å] is shorter than the corresponding value in (I) [2.253 (3) Å], but Zn is four-coordinate. In complexes (II), (III) and (IV), where Zn atoms are six-, five- and five-coordinate, the average Zn—O bond lengths are 2.117 (2) Å, 2.107 (2) Å and 2.047 (5) Å, respectively. The average Zn—N bond length [2.087 (3) Å] in (I) is in good agreement with the values reported in (III) [2.075 (2) Å], (IV) [2.089 (5) Å] and (V) [2.049 (2) Å], while it is shorter than the corresponding value in (II) [2.169 (3) Å]. The Zn atom lies -0.0682 (5) and -0.0030 (4) Å out of the O1/C1/O2 and O3/C8/O4 carboxyl planes, respectively.

In the carboxylate group, the C1—O1 and C8—O3 bond lengths [1.266 (4) and 1.264 (4) Å] are a little larger than the C1—O2 and C8—O4 [1.246 (4) and 1.229 (4) Å] bond lengths and may be compared with the corresponding distances: 1.260 (4) and 1.252 (4) Å in (II), 1.281 (3), 1.274 (3) and 1.240 (3), 1.245 (3) Å in (III) and 1.279 (4) and 1.246 (4) Å in (V). The dihedral angles between the mean planes of the carboxyl groups (O1/C1/O2 and O3/C8/O4) and the benzene rings [A (C2 to C7) and B (C9 to C14)] in the FB ligands are 8.2 (2) and 7.5 (2)°, respectively; these may be compared with the corresponding values of 2.8 (3)° in (II), 12.2 (2) and 10.0 (2)° in (III). The configuration around the Zn atom is given by the torsion angles. Rings A, B, C (N1/C15 to C19) and D (N3/C21 to C25) are, of course, planar and they are oriented with respect to each other at dihedral angles of A/B = 81.33 (13), A/C = 25.48 (13), A/D = 85.10 (12), B/C = 79.78 (12), B/D = 3.78 (11) and C/D = 83.06 (12)°.

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are linked by intermolecular O—H···O and N—H···O hydrogen bonds (Table 2), forming a supramolecular structure.

Experimental

The title compound was prepared by the reaction of Zn(NO3)2 (1.89 g, 10 mmol) in H2O (25 ml) and nicotinamide (2.16 g, 20 mmol) in H2O (25 ml) with sodium p-fluorobenzoate (3.24 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement

H atoms of the water molecule were located in a difference Fourier map and refined with a fixed displacement parameter, Uiso(H) = 0.237 Å2. The restrains on the O—H bond lengths and H—O—H bond angle of water molecule were applied. The remaining H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86 and C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 10% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
A packing diagram of the title compound, viewed down the a axis, showing hydrogen bonds (dashed lines) linking the molecules. H atoms have been omitted for clarity.

Crystal data

[Zn(C7H4FO2)2(C6H6N2O)2]·H2OZ = 2
Mr = 605.87F000 = 620
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.2363 (2) ÅCell parameters from 25 reflections
b = 12.3711 (2) Åθ = 6.3–15.8º
c = 14.8971 (3) ŵ = 0.99 mm1
α = 113.178 (14)ºT = 294 (2) K
β = 99.015 (17)ºBlock, colorless
γ = 99.465 (16)º0.30 × 0.25 × 0.20 mm
V = 1334.7 (2) Å3

Data collection

Enraf–Nonius TurboCAD-4 diffractometerRint = 0.058
Radiation source: fine-focus sealed tubeθmax = 26.3º
Monochromator: graphiteθmin = 2.6º
T = 294(2) Kh = 0→10
ω scansk = −15→15
Absorption correction: ψ scan(North et al., 1968)l = −18→18
Tmin = 0.735, Tmax = 0.8163 standard reflections
5794 measured reflections every 120 min
5401 independent reflections intensity decay: 1%
4454 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152  w = 1/[σ2(Fo2) + (0.1013P)2 + 0.1012P] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
5401 reflectionsΔρmax = 0.70 e Å3
368 parametersΔρmin = −0.90 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.39886 (4)0.27400 (3)0.12795 (2)0.04482 (17)
F10.3683 (5)−0.0772 (3)−0.46673 (18)0.1135 (10)
F21.3183 (4)0.6557 (3)0.5118 (2)0.1174 (11)
O10.3504 (3)0.14478 (19)−0.01064 (16)0.0548 (5)
O20.4950 (3)0.30575 (19)−0.01740 (17)0.0551 (5)
O30.5801 (3)0.4167 (3)0.2340 (2)0.0702 (7)
O40.6874 (4)0.2602 (2)0.1867 (2)0.0769 (8)
O50.1224 (4)0.1149 (2)0.48350 (18)0.0745 (8)
O6−0.0625 (3)0.71261 (19)0.16243 (18)0.0596 (6)
O70.2133 (11)−0.0996 (5)−0.0339 (6)0.230 (4)
H710.295 (9)−0.022 (4)−0.005 (7)0.237*
H720.260 (10)−0.154 (6)−0.078 (6)0.237*
N10.3033 (3)0.1816 (2)0.20611 (18)0.0459 (6)
N20.0163 (4)−0.0739 (3)0.3616 (2)0.0637 (8)
H2A−0.0266−0.09980.40070.076*
H2B0.0043−0.12280.29960.076*
N30.2216 (3)0.3771 (2)0.12605 (18)0.0447 (5)
N4−0.2859 (4)0.5519 (3)0.0811 (2)0.0590 (7)
H4A−0.35430.59640.07730.071*
H4B−0.32350.47430.05600.071*
C10.4207 (4)0.1958 (3)−0.0584 (2)0.0456 (6)
C20.4091 (4)0.1219 (3)−0.1675 (2)0.0468 (7)
C30.4631 (5)0.1776 (3)−0.2257 (3)0.0686 (10)
H30.50870.2611−0.19640.082*
C40.4501 (6)0.1109 (4)−0.3262 (3)0.0845 (13)
H40.48580.1482−0.36550.101*
C50.3844 (6)−0.0099 (4)−0.3665 (3)0.0733 (10)
C60.3290 (6)−0.0687 (3)−0.3127 (3)0.0720 (10)
H60.2827−0.1522−0.34320.086*
C70.3433 (5)−0.0015 (3)−0.2115 (3)0.0616 (9)
H70.3081−0.0400−0.17290.074*
C80.7031 (4)0.3684 (3)0.2396 (2)0.0561 (8)
C90.8671 (4)0.4466 (3)0.3131 (2)0.0471 (7)
C100.8903 (5)0.5711 (3)0.3645 (3)0.0576 (8)
H100.80250.60650.35370.069*
C111.0424 (5)0.6425 (4)0.4315 (3)0.0723 (11)
H111.05920.72610.46570.087*
C121.1677 (5)0.5872 (4)0.4462 (3)0.0720 (10)
C131.1497 (5)0.4663 (4)0.3980 (3)0.0731 (11)
H131.23790.43190.41030.088*
C140.9975 (5)0.3947 (3)0.3299 (3)0.0601 (8)
H140.98310.31140.29540.072*
C150.3619 (4)0.2332 (3)0.3051 (2)0.0552 (8)
H150.44930.30370.33440.066*
C160.2988 (4)0.1868 (3)0.3668 (2)0.0563 (8)
H160.34190.22680.43620.068*
C170.1730 (4)0.0820 (3)0.3253 (2)0.0468 (7)
C180.1122 (5)0.0265 (3)0.2222 (3)0.0710 (11)
H180.0274−0.04550.19110.085*
C190.1796 (5)0.0799 (4)0.1658 (3)0.0714 (11)
H190.13640.04300.09630.086*
C200.0998 (5)0.0398 (3)0.3964 (2)0.0536 (8)
C210.0622 (4)0.3283 (3)0.0705 (2)0.0474 (7)
H210.02880.24480.03110.057*
C22−0.0549 (4)0.3948 (3)0.0684 (2)0.0460 (6)
H22−0.16490.35630.02880.055*
C23−0.0092 (4)0.5193 (2)0.1254 (2)0.0415 (6)
C240.1563 (4)0.5696 (3)0.1836 (2)0.0535 (7)
H240.19320.65280.22370.064*
C250.2657 (4)0.4967 (3)0.1819 (3)0.0539 (7)
H250.37600.53260.22170.065*
C26−0.1227 (4)0.6028 (3)0.1256 (2)0.0451 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0522 (2)0.0428 (2)0.0383 (2)0.00425 (15)0.01085 (15)0.01931 (16)
F10.165 (3)0.109 (2)0.0478 (13)0.020 (2)0.0416 (16)0.0141 (14)
F20.0804 (17)0.103 (2)0.097 (2)−0.0022 (15)−0.0312 (15)0.0000 (17)
O10.0764 (15)0.0430 (11)0.0404 (11)0.0061 (10)0.0155 (10)0.0162 (9)
O20.0579 (13)0.0396 (11)0.0532 (13)0.0014 (9)0.0015 (10)0.0138 (10)
O30.0574 (14)0.0737 (17)0.0754 (17)0.0012 (12)−0.0024 (12)0.0409 (14)
O40.0813 (18)0.0568 (15)0.0639 (16)−0.0109 (13)0.0102 (14)0.0110 (13)
O50.118 (2)0.0515 (13)0.0494 (14)−0.0009 (14)0.0378 (14)0.0188 (11)
O60.0685 (14)0.0359 (11)0.0611 (14)0.0063 (10)0.0086 (11)0.0128 (10)
O70.314 (9)0.100 (4)0.263 (8)0.007 (5)0.209 (7)0.032 (4)
N10.0529 (14)0.0467 (13)0.0400 (12)0.0058 (11)0.0124 (11)0.0229 (11)
N20.094 (2)0.0480 (15)0.0496 (16)0.0031 (15)0.0304 (15)0.0221 (13)
N30.0516 (13)0.0441 (13)0.0379 (12)0.0068 (11)0.0113 (10)0.0190 (10)
N40.0539 (15)0.0421 (13)0.078 (2)0.0074 (12)0.0060 (14)0.0285 (14)
C10.0475 (15)0.0436 (15)0.0431 (15)0.0108 (12)0.0083 (12)0.0172 (12)
C20.0505 (16)0.0437 (15)0.0422 (15)0.0080 (12)0.0104 (12)0.0164 (12)
C30.087 (3)0.055 (2)0.059 (2)−0.0021 (18)0.0273 (19)0.0243 (17)
C40.110 (3)0.086 (3)0.063 (2)0.008 (3)0.039 (2)0.037 (2)
C50.088 (3)0.082 (3)0.0430 (18)0.020 (2)0.0239 (18)0.0166 (18)
C60.103 (3)0.0466 (18)0.0481 (19)0.0094 (19)0.0173 (19)0.0058 (15)
C70.086 (2)0.0482 (17)0.0474 (18)0.0106 (17)0.0178 (17)0.0196 (14)
C80.0600 (19)0.065 (2)0.0458 (17)−0.0015 (16)0.0115 (14)0.0338 (16)
C90.0522 (16)0.0520 (16)0.0373 (14)0.0053 (13)0.0119 (12)0.0219 (13)
C100.0627 (19)0.0558 (18)0.0514 (18)0.0169 (15)0.0130 (15)0.0196 (15)
C110.082 (3)0.051 (2)0.056 (2)0.0103 (18)0.0054 (19)0.0022 (16)
C120.059 (2)0.074 (2)0.051 (2)0.0022 (18)−0.0064 (16)0.0081 (18)
C130.062 (2)0.077 (3)0.071 (2)0.0246 (19)0.0039 (19)0.024 (2)
C140.069 (2)0.0504 (18)0.0531 (19)0.0128 (16)0.0121 (16)0.0161 (15)
C150.0567 (18)0.0554 (18)0.0450 (16)−0.0059 (15)0.0072 (14)0.0228 (14)
C160.0651 (19)0.0599 (19)0.0378 (15)−0.0006 (15)0.0093 (14)0.0225 (14)
C170.0584 (17)0.0448 (15)0.0439 (15)0.0130 (13)0.0184 (13)0.0235 (13)
C180.092 (3)0.058 (2)0.0443 (18)−0.0178 (19)0.0138 (18)0.0188 (16)
C190.088 (3)0.072 (2)0.0381 (16)−0.016 (2)0.0103 (17)0.0226 (16)
C200.072 (2)0.0472 (16)0.0471 (17)0.0085 (15)0.0245 (15)0.0242 (14)
C210.0565 (17)0.0362 (14)0.0408 (14)0.0014 (12)0.0078 (13)0.0133 (12)
C220.0476 (15)0.0407 (14)0.0402 (14)−0.0001 (12)0.0045 (12)0.0145 (12)
C230.0504 (15)0.0396 (14)0.0349 (13)0.0036 (12)0.0121 (11)0.0188 (11)
C240.0565 (18)0.0373 (14)0.0522 (17)−0.0011 (13)0.0031 (14)0.0134 (13)
C250.0503 (17)0.0437 (16)0.0545 (18)0.0015 (13)0.0016 (14)0.0159 (14)
C260.0553 (17)0.0424 (15)0.0373 (14)0.0059 (13)0.0117 (12)0.0191 (12)

Geometric parameters (Å, °)

Zn—O11.978 (2)C6—H60.9300
Zn—O22.564 (3)C7—C61.379 (5)
Zn—O32.010 (3)C7—H70.9300
Zn—O42.458 (3)C9—C141.377 (5)
Zn—N12.079 (2)C9—C101.386 (4)
Zn—N32.095 (3)C9—C81.494 (4)
F1—C51.365 (4)C10—H100.9300
F2—C121.354 (4)C11—C101.376 (5)
O2—C11.246 (4)C11—C121.364 (6)
O3—C81.264 (4)C11—H110.9300
O4—C81.229 (4)C12—C131.350 (6)
O5—C201.225 (4)C13—H130.9300
O6—C261.224 (4)C14—C131.384 (5)
O7—H710.97 (8)C14—H140.9300
O7—H720.92 (8)C15—C161.383 (4)
N1—C151.322 (4)C15—H150.9300
N1—C191.332 (4)C16—H160.9300
N2—C201.310 (4)C17—C161.365 (4)
N2—H2A0.8600C17—C181.377 (4)
N2—H2B0.8600C17—C201.514 (4)
N3—C251.332 (4)C18—H180.9300
N3—C211.333 (4)C19—C181.382 (5)
N4—H4A0.8600C19—H190.9300
N4—H4B0.8600C21—H210.9300
C1—O11.266 (4)C22—C211.372 (4)
C1—C21.497 (4)C22—H220.9300
C2—C31.384 (4)C23—C221.384 (4)
C2—C71.372 (4)C23—C241.387 (4)
C3—C41.371 (6)C23—C261.502 (4)
C3—H30.9300C24—C251.371 (5)
C4—H40.9300C24—H240.9300
C5—C41.346 (6)C25—H250.9300
C5—C61.359 (6)C26—N41.326 (4)
O1—Zn—O255.96 (12)O4—C8—Zn70.8 (2)
O1—Zn—O3142.65 (12)C9—C8—Zn168.1 (3)
O1—Zn—O497.49 (10)C10—C9—C8120.9 (3)
O1—Zn—N1102.97 (9)C14—C9—C10119.4 (3)
O1—Zn—N3106.17 (10)C14—C9—C8119.7 (3)
O2—Zn—O393.35 (10)C9—C10—H10119.8
O2—Zn—O488.13 (10)C11—C10—C9120.4 (3)
O2—Zn—N1158.51 (9)C11—C10—H10119.8
O2—Zn—N390.70 (9)C10—C11—H11120.9
O3—Zn—O457.04 (10)C12—C11—C10118.2 (3)
O3—Zn—N1104.14 (10)C12—C11—H11120.9
O3—Zn—N393.66 (11)F2—C12—C11119.1 (4)
O4—Zn—N190.96 (10)C13—C12—F2117.7 (4)
O4—Zn—N3150.53 (10)C13—C12—C11123.1 (3)
N1—Zn—N3100.39 (10)C12—C13—C14118.7 (4)
C1—O1—Zn104.58 (18)C12—C13—H13120.7
C8—O3—Zn101.0 (2)C14—C13—H13120.7
C8—O4—Zn81.0 (2)C9—C14—C13120.1 (3)
H72—O7—H71107 (4)C9—C14—H14119.9
C15—N1—C19117.5 (3)C13—C14—H14119.9
C15—N1—Zn116.9 (2)N1—C15—C16122.8 (3)
C19—N1—Zn125.4 (2)N1—C15—H15118.6
C20—N2—H2A120.0C16—C15—H15118.6
C20—N2—H2B120.0C15—C16—H16120.2
H2A—N2—H2B120.0C17—C16—C15119.6 (3)
C21—N3—Zn122.8 (2)C17—C16—H16120.2
C25—N3—C21117.0 (3)C16—C17—C18118.1 (3)
C25—N3—Zn120.2 (2)C16—C17—C20117.5 (3)
C26—N4—H4A120.0C18—C17—C20124.2 (3)
C26—N4—H4B120.0C17—C18—C19118.8 (3)
H4A—N4—H4B120.0C17—C18—H18120.6
O1—C1—C2118.5 (3)C19—C18—H18120.6
O2—C1—O1121.6 (3)N1—C19—C18123.2 (3)
O2—C1—C2119.8 (3)N1—C19—H19118.4
C3—C2—C1120.2 (3)C18—C19—H19118.4
C7—C2—C3119.1 (3)O5—C20—N2124.0 (3)
C7—C2—C1120.7 (3)O5—C20—C17117.5 (3)
C2—C3—H3119.7N2—C20—C17118.5 (3)
C4—C3—C2120.7 (3)N3—C21—C22123.4 (3)
C4—C3—H3119.7N3—C21—H21118.3
C3—C4—H4120.8C22—C21—H21118.3
C5—C4—C3118.4 (4)C21—C22—C23119.9 (3)
C5—C4—H4120.8C21—C22—H22120.0
C4—C5—C6123.2 (3)C23—C22—H22120.0
C4—C5—F1119.1 (4)C22—C23—C24116.5 (3)
C6—C5—F1117.8 (4)C22—C23—C26125.0 (3)
C5—C6—C7118.3 (3)C24—C23—C26118.5 (3)
C5—C6—H6120.9C23—C24—H24120.0
C7—C6—H6120.9C25—C24—C23120.1 (3)
C2—C7—C6120.4 (3)C25—C24—H24120.0
C2—C7—H7119.8N3—C25—C24123.2 (3)
C6—C7—H7119.8N3—C25—H25118.4
O3—C8—Zn50.10 (17)C24—C25—H25118.4
O3—C8—C9118.0 (3)O6—C26—N4122.7 (3)
O4—C8—O3120.9 (3)O6—C26—C23120.1 (3)
O4—C8—C9121.1 (3)N4—C26—C23117.2 (3)
O1—Zn—N1—C15159.4 (2)C3—C2—C7—C6−0.9 (6)
O1—Zn—N1—C19−25.8 (3)C1—C2—C7—C6178.4 (4)
O3—Zn—N1—C155.4 (3)C7—C2—C3—C40.5 (6)
O3—Zn—N1—C19−179.9 (3)C1—C2—C3—C4−178.8 (4)
O4—Zn—N1—C1561.5 (3)C6—C5—C4—C30.6 (8)
O4—Zn—N1—C19−123.7 (3)F1—C5—C4—C3179.0 (4)
N3—Zn—N1—C15−91.1 (3)C2—C3—C4—C5−0.3 (7)
N3—Zn—N1—C1983.6 (3)C4—C5—C6—C7−1.0 (7)
O1—Zn—N3—C2135.9 (2)F1—C5—C6—C7−179.4 (4)
O1—Zn—N3—C25−144.1 (2)C2—C7—C6—C51.1 (6)
O3—Zn—N3—C21−176.1 (2)C14—C9—C8—O4−6.9 (4)
O3—Zn—N3—C253.9 (2)C10—C9—C8—O4172.9 (3)
O4—Zn—N3—C21178.0 (2)C14—C9—C8—O3172.5 (3)
O4—Zn—N3—C25−2.0 (3)C10—C9—C8—O3−7.7 (4)
N1—Zn—N3—C21−71.0 (2)C14—C9—C8—Zn170.6 (8)
N1—Zn—N3—C25109.0 (2)C10—C9—C8—Zn−9.6 (12)
O3—Zn—O1—C1−38.7 (3)C14—C9—C10—C110.3 (5)
O4—Zn—O1—C1−81.6 (2)C8—C9—C10—C11−179.5 (3)
N1—Zn—O1—C1−174.32 (19)C10—C9—C14—C130.4 (5)
N3—Zn—O1—C180.6 (2)C8—C9—C14—C13−179.8 (3)
O1—Zn—O3—C8−53.5 (3)C12—C11—C10—C9−0.7 (6)
N1—Zn—O3—C881.8 (2)C10—C11—C12—C130.4 (7)
N3—Zn—O3—C8−176.5 (2)C10—C11—C12—F2180.0 (4)
O4—Zn—O3—C80.04 (18)F2—C12—C13—C14−179.3 (4)
O1—Zn—O4—C8150.46 (19)C11—C12—C13—C140.3 (7)
O3—Zn—O4—C8−0.04 (19)C9—C14—C13—C12−0.7 (6)
N1—Zn—O4—C8−106.3 (2)N1—C15—C16—C171.3 (6)
N3—Zn—O4—C87.0 (3)C18—C17—C16—C15−0.5 (5)
Zn—O3—C8—O4−0.1 (4)C20—C17—C16—C15−175.8 (3)
Zn—O3—C8—C9−179.5 (2)C16—C17—C18—C19−0.7 (6)
Zn—O4—C8—O30.1 (3)C20—C17—C18—C19174.2 (4)
Zn—O4—C8—C9179.5 (3)C16—C17—C20—O519.1 (5)
C19—N1—C15—C16−0.8 (6)C18—C17—C20—O5−155.9 (4)
Zn—N1—C15—C16174.4 (3)C16—C17—C20—N2−161.1 (3)
C15—N1—C19—C18−0.5 (6)C18—C17—C20—N223.9 (5)
Zn—N1—C19—C18−175.2 (3)N1—C19—C18—C171.3 (7)
C25—N3—C21—C220.2 (4)C23—C22—C21—N30.6 (5)
Zn—N3—C21—C22−179.8 (2)C24—C23—C22—C21−0.9 (4)
C21—N3—C25—C24−0.5 (5)C26—C23—C22—C21176.7 (3)
Zn—N3—C25—C24179.5 (3)C22—C23—C24—C250.6 (5)
O2—C1—O1—Zn−2.1 (3)C26—C23—C24—C25−177.2 (3)
C2—C1—O1—Zn179.6 (2)C23—C24—C25—N30.1 (5)
O2—C1—C2—C7173.3 (3)C22—C23—C26—O6−165.7 (3)
O1—C1—C2—C7−8.3 (5)C24—C23—C26—O611.9 (4)
O2—C1—C2—C3−7.4 (5)C22—C23—C26—N411.7 (4)
O1—C1—C2—C3171.0 (3)C24—C23—C26—N4−170.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H71···O10.97 (7)2.08 (7)2.910 (8)144 (6)
O7—H72···O4i0.92 (8)1.81 (8)2.713 (10)167 (8)
N2—H2A···O5ii0.862.072.905 (4)165
N2—H2B···O6iii0.862.152.977 (4)161
N4—H4A···O2iv0.862.142.961 (4)159
N4—H4B···O2v0.862.112.920 (4)157

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x, −y+1, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2118).

References

  • Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  • Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim.20, 1075–1080.
  • Amiraslanov, I. R., Nadzhafov, G. N., Usubaliev, B. T., Musaev, A. A., Movsumov, E. M. & Mamedov, Kh. S. (1980). Zh. Strukt. Khim.21, 140–145.
  • Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim.15, 1098–1103.
  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun.8, 795–798.
  • Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.
  • Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.
  • Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456–457.
  • Day, M. C. & Selbin, J. (1969). Theoretical Inorganic Chemistry, p. 109. New York: Van Nostrand Reinhold.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim.10, 117–122.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.
  • Hökelek, T. & Necefoğlu, H. (2001). Anal. Sci.17, 1241–1242. [PubMed]
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [PubMed]
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Nadzhafov, G. N., Usubaliev, B. T., Amiraslanov, I. R., Movsumov, E. M. & Mamedov, Kh. S. (1981). Koord. Khim.7, 770–775.
  • Necefoğlu, H., Hökelek, T., Ersanlı, C. C. & Erdönmez, A. (2002). Acta Cryst. E58, m758–m761.
  • Niekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst.6, 720–723.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.
  • Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim.33, 203–2.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography