PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o629.
Published online 2008 February 27. doi:  10.1107/S1600536807065907
PMCID: PMC2960820

Tris[2-(pyrrol-2-ylmethyl­eneamino)eth­yl]amine

Abstract

The title compound, C21H27N7, was synthesized by reaction of tris­(2-amino­ethyl)amine and pyrrole-2-carbaldehyde in ethanol at room temperature. The structure is stabilized by intra- and inter­molecular C—H(...)N and N—H(...)N hydrogen-bonding inter­actions.

Related literature

For the self-assembly of pyrrole Schiff base–metal complexes, see: Wu et al. (2003 [triangle], 2006 [triangle]); Yang, Chen et al. (2004 [triangle]); Yang, Shan et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o629-scheme1.jpg

Experimental

Crystal data

  • C21H27N7
  • M r = 377.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o629-efi1.jpg
  • a = 11.494 (2) Å
  • b = 9.4875 (19) Å
  • c = 20.232 (4) Å
  • β = 105.97 (3)°
  • V = 2121.1 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.80 × 0.08 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.943, T max = 0.995
  • 19300 measured reflections
  • 4832 independent reflections
  • 1905 reflections with I > 2σ(I)
  • R int = 0.0685

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.142
  • S = 1.01
  • 4832 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065907/rz2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065907/rz2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 90301010, 50573084, 90606004).

supplementary crystallographic information

Comment

The chemistry and crystal structure of Schiff base derivatives of pyrrole have been extensively studied for many years as these compounds represent the basic units of porphyrins. More recently, it has been pointed out that pyrrole Schiff bases are ideal building blocks for the self-assembly of metallosupramolecules (Wu et al., 2006; Wu et al., 2003; Yang, Chen et al., 2004; Yang, Shan et al., 2004) due to the presence of many hydrogen bond donors and acceptors. In view of its potential interest in this field, the title compound was synthesized and its crystal structure is reported here.

In the title compound, bond lengths and angles are as expected, with the N2—C3, N4—C10 and N6—C17 bond lengths (mean value 1.270 (3) Å) indicating a remarkable double-bond character. The molecular conformation is stabilized by an intramolecular C—H···N hydrogen bond (Table 1). In the crystal structure, the molecules are linked by intermolecular N—H···N hydrogen bonding interactions (Table 1).

Experimental

The title compound was prepared by reaction of tris(2-aminoethyl)amine, (0.05 mol) and pyrrole-2-carbaldehyde (0.15 mol) in ethanol (40 ml) at room temperature. Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol/acetonitrile solution (1:1 v/v) at room temperature.

Refinement

All H atoms were fixed geometrically and were treated as riding on the parent atoms, with C—H = 0.93–0.97 Å, N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C21H27N7F000 = 808
Mr = 377.50Dx = 1.182 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19300 reflections
a = 11.494 (2) Åθ = 1.9–27.5º
b = 9.4875 (19) ŵ = 0.08 mm1
c = 20.232 (4) ÅT = 293 (2) K
β = 105.97 (3)ºNeedle, brown
V = 2121.1 (8) Å30.80 × 0.08 × 0.05 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer4832 independent reflections
Radiation source: Rotating Anode1905 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.069
T = 293(2) Kθmax = 27.5º
oscillation scansθmin = 1.9º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −14→14
Tmin = 0.943, Tmax = 0.995k = 0→12
19300 measured reflectionsl = −13→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142  w = 1/[σ2(Fo2) + (0.0318P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4832 reflectionsΔρmax = 0.20 e Å3
253 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.32208 (19)0.2117 (2)−0.04712 (11)0.0456 (6)
N20.3346 (2)0.3634 (2)−0.17842 (11)0.0439 (6)
N30.47309 (19)0.6138 (3)−0.18248 (11)0.0493 (7)
H3A0.43610.6213−0.15100.059*
N40.1461 (2)0.1199 (3)0.03356 (12)0.0477 (6)
N50.1051 (2)−0.1779 (3)0.05915 (12)0.0523 (7)
H5A0.0388−0.14260.03390.063*
N60.6284 (2)0.2840 (2)0.07191 (11)0.0443 (6)
N70.8400 (2)0.4282 (2)0.15596 (12)0.0453 (6)
H7A0.77610.46880.16110.054*
C10.3214 (3)0.1456 (3)−0.11191 (15)0.0520 (8)
H1A0.27440.0595−0.11590.062*
H1B0.40390.1183−0.10930.062*
C20.2728 (3)0.2291 (3)−0.17799 (14)0.0503 (8)
H2B0.28100.1726−0.21640.060*
H2C0.18730.2469−0.18450.060*
C30.4025 (3)0.3753 (3)−0.21867 (14)0.0470 (8)
H3B0.40800.2990−0.24650.056*
C40.4703 (3)0.4995 (3)−0.22330 (15)0.0454 (7)
C50.5409 (3)0.5307 (4)−0.26616 (17)0.0646 (10)
H5B0.55560.4714−0.29960.078*
C60.5863 (3)0.6656 (4)−0.25109 (18)0.0690 (10)
H6B0.63660.7136−0.27250.083*
C70.5439 (3)0.7142 (4)−0.19947 (16)0.0620 (9)
H7B0.56040.8023−0.17890.074*
C80.2084 (2)0.2788 (3)−0.04489 (15)0.0553 (8)
H8A0.14230.2371−0.07990.066*
H8B0.21170.3782−0.05550.066*
C90.1833 (3)0.2634 (3)0.02435 (15)0.0536 (8)
H9A0.25560.28650.06060.064*
H9B0.11990.32850.02740.064*
C100.2245 (3)0.0402 (4)0.07166 (15)0.0513 (8)
H10A0.29930.08040.09290.062*
C110.2099 (3)−0.1055 (3)0.08539 (15)0.0483 (8)
C120.2924 (3)−0.2002 (4)0.12203 (16)0.0643 (10)
H12A0.3723−0.18020.14550.077*
C130.2371 (3)−0.3313 (4)0.11832 (18)0.0688 (10)
H13A0.2724−0.41440.13880.083*
C140.1217 (3)−0.3143 (4)0.07898 (17)0.0640 (9)
H14A0.0634−0.38490.06750.077*
C150.4299 (2)0.2945 (3)−0.01526 (14)0.0475 (8)
H15A0.40980.36700.01350.057*
H15B0.45830.3405−0.05070.057*
C160.5290 (2)0.2023 (3)0.02762 (15)0.0508 (8)
H16A0.49520.14100.05600.061*
H16B0.56060.1433−0.00260.061*
C170.7349 (3)0.2535 (3)0.07048 (14)0.0448 (7)
H17A0.74450.18410.03990.054*
C180.8415 (2)0.3190 (3)0.11291 (13)0.0422 (7)
C190.9607 (3)0.2851 (4)0.12042 (15)0.0558 (9)
H19A0.98870.21420.09700.067*
C201.0321 (3)0.3751 (4)0.16917 (17)0.0640 (10)
H20A1.11610.37510.18480.077*
C210.9557 (3)0.4631 (4)0.18960 (16)0.0587 (9)
H21A0.97870.53550.22150.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0367 (14)0.0511 (15)0.0462 (14)−0.0059 (12)0.0069 (11)0.0022 (14)
N20.0470 (15)0.0457 (15)0.0387 (14)−0.0016 (13)0.0110 (11)−0.0027 (13)
N30.0465 (15)0.0601 (17)0.0389 (14)−0.0048 (14)0.0076 (12)0.0047 (15)
N40.0402 (14)0.0572 (17)0.0477 (15)−0.0037 (13)0.0154 (12)0.0050 (14)
N50.0446 (16)0.0555 (17)0.0549 (16)0.0010 (13)0.0104 (12)0.0092 (15)
N60.0392 (15)0.0470 (14)0.0438 (14)−0.0015 (12)0.0066 (11)−0.0065 (13)
N70.0389 (14)0.0478 (15)0.0489 (15)−0.0009 (12)0.0118 (11)0.0055 (14)
C10.0474 (18)0.0435 (18)0.061 (2)−0.0076 (16)0.0084 (15)0.0023 (18)
C20.0528 (19)0.0506 (19)0.0442 (18)−0.0093 (16)0.0080 (15)−0.0090 (17)
C30.0523 (19)0.0499 (19)0.0377 (16)0.0076 (17)0.0103 (15)−0.0031 (16)
C40.0474 (18)0.0479 (19)0.0404 (17)0.0032 (16)0.0110 (14)0.0010 (17)
C50.066 (2)0.076 (3)0.060 (2)0.006 (2)0.0314 (18)0.007 (2)
C60.063 (2)0.086 (3)0.061 (2)−0.011 (2)0.0206 (18)0.018 (2)
C70.062 (2)0.060 (2)0.055 (2)−0.0187 (19)0.0002 (17)0.010 (2)
C80.0402 (18)0.067 (2)0.0571 (19)−0.0017 (17)0.0110 (15)0.0140 (19)
C90.0436 (18)0.064 (2)0.0541 (19)−0.0028 (17)0.0150 (15)0.0061 (18)
C100.0402 (18)0.072 (2)0.0429 (18)−0.0119 (18)0.0141 (14)−0.0050 (19)
C110.0395 (18)0.062 (2)0.0438 (18)−0.0033 (17)0.0114 (14)0.0017 (18)
C120.0400 (19)0.088 (3)0.059 (2)0.004 (2)0.0024 (16)0.012 (2)
C130.063 (2)0.067 (2)0.074 (2)0.014 (2)0.0140 (19)0.018 (2)
C140.058 (2)0.062 (2)0.070 (2)−0.0003 (19)0.0128 (19)0.009 (2)
C150.0443 (18)0.0481 (18)0.0476 (17)−0.0060 (15)0.0087 (14)0.0018 (16)
C160.0450 (18)0.0510 (19)0.0530 (18)−0.0034 (16)0.0077 (14)−0.0060 (17)
C170.0464 (19)0.0486 (18)0.0404 (16)0.0026 (16)0.0134 (14)−0.0026 (16)
C180.0435 (19)0.0478 (19)0.0370 (16)−0.0018 (15)0.0141 (14)0.0012 (16)
C190.0418 (19)0.075 (2)0.056 (2)0.0056 (18)0.0231 (15)0.007 (2)
C200.0361 (18)0.080 (3)0.073 (2)−0.004 (2)0.0112 (17)0.013 (2)
C210.047 (2)0.058 (2)0.061 (2)−0.0204 (18)−0.0026 (16)0.0047 (19)

Geometric parameters (Å, °)

N1—C11.451 (3)C6—H6B0.9300
N1—C151.460 (3)C7—H7B0.9300
N1—C81.465 (3)C8—C91.513 (4)
N2—C31.279 (3)C8—H8A0.9700
N2—C21.459 (3)C8—H8B0.9700
N3—C71.357 (4)C9—H9A0.9700
N3—C41.358 (3)C9—H9B0.9700
N3—H3A0.8600C10—C111.429 (4)
N4—C101.264 (3)C10—H10A0.9300
N4—C91.454 (4)C11—C121.368 (4)
N5—C141.352 (4)C12—C131.388 (4)
N5—C111.362 (3)C12—H12A0.9300
N5—H5A0.8600C13—C141.356 (4)
N6—C171.267 (3)C13—H13A0.9300
N6—C161.464 (3)C14—H14A0.9300
N7—C211.357 (3)C15—C161.506 (3)
N7—C181.357 (3)C15—H15A0.9700
N7—H7A0.8600C15—H15B0.9700
C1—C21.522 (4)C16—H16A0.9700
C1—H1A0.9700C16—H16B0.9700
C1—H1B0.9700C17—C181.430 (4)
C2—H2B0.9700C17—H17A0.9300
C2—H2C0.9700C18—C191.374 (4)
C3—C41.430 (4)C19—C201.389 (4)
C3—H3B0.9300C19—H19A0.9300
C4—C51.373 (4)C20—C211.356 (4)
C5—C61.385 (4)C20—H20A0.9300
C5—H5B0.9300C21—H21A0.9300
C6—C71.350 (4)
C1—N1—C15115.1 (2)N4—C9—C8110.3 (3)
C1—N1—C8115.6 (2)N4—C9—H9A109.6
C15—N1—C8114.1 (2)C8—C9—H9A109.6
C3—N2—C2117.7 (2)N4—C9—H9B109.6
C7—N3—C4108.8 (3)C8—C9—H9B109.6
C7—N3—H3A125.6H9A—C9—H9B108.1
C4—N3—H3A125.6N4—C10—C11126.5 (3)
C10—N4—C9117.0 (3)N4—C10—H10A116.7
C14—N5—C11109.3 (3)C11—C10—H10A116.7
C14—N5—H5A125.4N5—C11—C12106.6 (3)
C11—N5—H5A125.4N5—C11—C10123.5 (3)
C17—N6—C16117.5 (2)C12—C11—C10129.8 (3)
C21—N7—C18108.9 (3)C11—C12—C13108.7 (3)
C21—N7—H7A125.5C11—C12—H12A125.6
C18—N7—H7A125.5C13—C12—H12A125.6
N1—C1—C2118.6 (2)C14—C13—C12106.5 (3)
N1—C1—H1A107.7C14—C13—H13A126.7
C2—C1—H1A107.7C12—C13—H13A126.7
N1—C1—H1B107.7N5—C14—C13108.8 (3)
C2—C1—H1B107.7N5—C14—H14A125.6
H1A—C1—H1B107.1C13—C14—H14A125.6
N2—C2—C1113.5 (2)N1—C15—C16110.9 (2)
N2—C2—H2B108.9N1—C15—H15A109.5
C1—C2—H2B108.9C16—C15—H15A109.5
N2—C2—H2C108.9N1—C15—H15B109.5
C1—C2—H2C108.9C16—C15—H15B109.5
H2B—C2—H2C107.7H15A—C15—H15B108.0
N2—C3—C4123.7 (3)N6—C16—C15112.6 (2)
N2—C3—H3B118.2N6—C16—H16A109.1
C4—C3—H3B118.2C15—C16—H16A109.1
N3—C4—C5107.0 (3)N6—C16—H16B109.1
N3—C4—C3122.7 (3)C15—C16—H16B109.1
C5—C4—C3130.3 (3)H16A—C16—H16B107.8
C4—C5—C6108.2 (3)N6—C17—C18124.1 (3)
C4—C5—H5B125.9N6—C17—H17A117.9
C6—C5—H5B125.9C18—C17—H17A117.9
C7—C6—C5106.9 (3)N7—C18—C19107.2 (3)
C7—C6—H6B126.5N7—C18—C17123.8 (3)
C5—C6—H6B126.5C19—C18—C17128.9 (3)
C6—C7—N3109.0 (3)C18—C19—C20108.1 (3)
C6—C7—H7B125.5C18—C19—H19A125.9
N3—C7—H7B125.5C20—C19—H19A125.9
N1—C8—C9112.7 (2)C21—C20—C19106.8 (3)
N1—C8—H8A109.1C21—C20—H20A126.6
C9—C8—H8A109.1C19—C20—H20A126.6
N1—C8—H8B109.1C20—C21—N7108.9 (3)
C9—C8—H8B109.1C20—C21—H21A125.5
H8A—C8—H8B107.8N7—C21—H21A125.5
C15—N1—C1—C2−87.6 (3)N4—C10—C11—N5−1.3 (5)
C8—N1—C1—C248.9 (3)N4—C10—C11—C12175.1 (3)
C3—N2—C2—C1110.2 (3)N5—C11—C12—C13−0.3 (4)
N1—C1—C2—N256.6 (3)C10—C11—C12—C13−177.2 (3)
C2—N2—C3—C4−178.6 (3)C11—C12—C13—C140.4 (4)
C7—N3—C4—C50.0 (3)C11—N5—C14—C130.1 (4)
C7—N3—C4—C3−179.5 (2)C12—C13—C14—N5−0.3 (4)
N2—C3—C4—N33.4 (4)C1—N1—C15—C16−85.5 (3)
N2—C3—C4—C5−175.9 (3)C8—N1—C15—C16137.4 (2)
N3—C4—C5—C6−0.2 (4)C17—N6—C16—C15−129.8 (3)
C3—C4—C5—C6179.2 (3)N1—C15—C16—N6−167.7 (2)
C4—C5—C6—C70.3 (4)C16—N6—C17—C18−177.0 (3)
C5—C6—C7—N3−0.3 (4)C21—N7—C18—C190.4 (3)
C4—N3—C7—C60.2 (3)C21—N7—C18—C17178.7 (3)
C1—N1—C8—C9144.0 (3)N6—C17—C18—N7−4.9 (4)
C15—N1—C8—C9−79.1 (3)N6—C17—C18—C19173.0 (3)
C10—N4—C9—C8102.4 (3)N7—C18—C19—C200.3 (3)
N1—C8—C9—N4−73.9 (3)C17—C18—C19—C20−177.9 (3)
C9—N4—C10—C11−177.0 (3)C18—C19—C20—C21−0.9 (4)
C14—N5—C11—C120.1 (3)C19—C20—C21—N71.1 (4)
C14—N5—C11—C10177.3 (3)C18—N7—C21—C20−0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15B···N20.972.593.246 (4)125
N3—H3A···N6i0.862.142.956 (3)159
N5—H5A···N4ii0.862.203.029 (3)163
N7—H7A···N2i0.862.132.940 (3)158

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2179).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1994). SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Wu, Z. K., Chen, Q. Q., Xiong, S. X., Xin, B., Zhao, Z. W., Jiang, L. J. & Ma, J. S. (2003). Angew. Chem. Int. Ed.42, 3271–3274. [PubMed]
  • Wu, Z. K., Zhang, Y. F., Ma, J. S. & Yang, G. Q. (2006). Inorg. Chem.45, 3140–3142. [PubMed]
  • Yang, L. Y., Chen, Q. Q., Li, Y., Xiong, S. X., Li, G. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem.29, 1478–1487.
  • Yang, L. Y., Shan, Q. F., Chen, Q. Q., Wang, Z. P. & Ma, J. S. (2004). Eur. J. Inorg. Chem.32, 1474–1477.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography