PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m490.
Published online 2008 February 20. doi:  10.1107/S1600536808004443
PMCID: PMC2960816

[2-(Phenyl­diazen­yl)pyrrolato]bis(2-pyridylphen­yl)iridium(III)

Abstract

In the title compound, [Ir(C10H8N3)(C11H8N)2], the Ir center is octa­hedrally coordinated by the three chelating ligands, with two cyclo­metalated 2-pyridylphenyl ligands [Ir—N = 2.049 (5) and 2.030 (5) Å; Ir—C = 2.016 (6) and 2.012 (6) Å] and a bidentate 2-(phenyl­diazen­yl)pyrrolate ligand [Ir—N = 2.204 (5) and 2.079 (5) Å]. The Ir—N(diazen­yl) bond is longer than the Ir—N(pyrrolate) bond. The structure is stabilized by aromatic π–π stacking, the shortest parallel distance between ring centroids being 3.426 (8) Å..

Related literature

For phospho­rescence properties of cyclo­metalated iridium complexes, see: Baldo et al. (2000 [triangle]); Pomestcheako et al. (2003 [triangle]); Chen et al. (2003 [triangle]). For the preparation of iridium complexes, see: Lamansky et al. (2001 [triangle]); Davies et al. (2006 [triangle]). For reference structural data, see: Allen (2002 [triangle]); Allen et al. (1987 [triangle]); Chin et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m490-scheme1.jpg

Experimental

Crystal data

  • [Ir(C10H8N3)(C11H8N)2]
  • M r = 670.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m490-efi1.jpg
  • a = 17.5606 (14) Å
  • b = 11.0213 (9) Å
  • c = 26.673 (2) Å
  • β = 93.282 (1)°
  • V = 5153.9 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.21 mm−1
  • T = 293 (2) K
  • 0.22 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.754, T max = 1.000 (expected range = 0.549–0.728)
  • 14220 measured reflections
  • 5327 independent reflections
  • 4228 reflections with I > 2σ(I)
  • R int = 0.140

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.107
  • S = 0.97
  • 5327 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 4.15 e Å−3
  • Δρmin = −2.38 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004443/at2539sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004443/at2539Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor J. S. for fruitful advice.

supplementary crystallographic information

Comment

Transition-metal (Ir) complexes that display intense phosphorescence from metal-to-ligand charge transfer (MLCT) excited states have been widely investigated (Baldo et al., 2000; Pomestcheako et al., 2003; Chen et al., 2003). These Ir complexes with long excited-stated lifetimes and high luminescent efficiencies can be used in a variety of photonic applications such as photocatalysis and organic light-emitting diodes (Chin et al., 1995). We report here the molecular structure of (I), (Fig. 1).

In the title compound (I), all the bond lengths and angles fall within normal ranges. Moreover, the Ir—C bond lengths are found to be shorter than the Ir—N bond lengths. In comparison with bis(2-pyridylphenyl)(acetylacetonate) iridium (Ir(ppy)2(acac)) which was reported in the literature (Lamansky et al., 2001), this title complex displays longer Ir—N bond with the same cis-C, C trans-N, N chelate disposition. The dihedral angles between rings in the two ppy ligands are 5.2 (4)° [between rings N4/C11–C15 and C16–C21] and 5.5 (6)° [(between rings N5/C28–C32 and C22–C27].

Experimental

To a stirring solution of 2-(2-phenylazo)-1H-pyrrole (60 mg,0.35 mmol) in dichloromethane (15 ml), sodium acetate (23 mg, 0.28 mmol) and [IrCl(ppy)2]2 (150 mg, 0.14 mmol) were added. The mixture was allowed to stir under an argon atmosphere at room temperature for 12 h. Then, the mixture was diluted with water and extracted thrice with 10 ml of dichloromethane. The organic extracts were combined and dried over anhydrous magnesium sulfate. After the solvent was removed in vacuo, the resulting residue was subjected to flash chromatography on silica gel using dichloromethane to afford the title compound (yield 75%). Red crystals of (I) suitable for X-ray structure analysis were grown from the mixture of dichloromethane and petroleum ether (v/v, 1:6).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å and Uiso = 1.2Ueq (C).

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ir(C10H8N3)(C11H8N)2]F000 = 2624
Mr = 670.76Dx = 1.729 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4482 reflections
a = 17.5606 (14) Åθ = 4.6–52.7º
b = 11.0213 (9) ŵ = 5.21 mm1
c = 26.673 (2) ÅT = 293 (2) K
β = 93.2820 (10)ºPrism, red
V = 5153.9 (7) Å30.22 × 0.14 × 0.06 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer5327 independent reflections
Radiation source: fine-focus sealed tube4228 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.140
T = 293(2) Kθmax = 26.5º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001)h = −21→22
Tmin = 0.754, Tmax = 1.000k = −13→6
14220 measured reflectionsl = −33→33

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0284P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.002
5327 reflectionsΔρmax = 4.15 e Å3
343 parametersΔρmin = −2.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir0.118518 (14)0.76861 (2)0.384282 (9)0.02997 (11)
N10.0029 (3)0.6954 (5)0.3915 (2)0.0339 (12)
N2−0.0012 (3)0.5952 (5)0.4165 (2)0.0366 (13)
N30.1331 (3)0.6047 (5)0.42223 (18)0.0332 (12)
N40.1050 (3)0.8704 (5)0.44743 (17)0.0312 (12)
N50.1403 (3)0.6834 (5)0.31918 (18)0.0358 (12)
C10.0655 (4)0.5480 (6)0.4316 (3)0.0392 (16)
C20.0800 (4)0.4391 (6)0.4596 (3)0.0487 (19)
H20.04420.38540.47120.058*
C30.1589 (5)0.4304 (7)0.4660 (3)0.052 (2)
H30.18660.36890.48250.063*
C40.1888 (4)0.5342 (7)0.4422 (3)0.0485 (19)
H40.24050.55090.44080.058*
C5−0.0713 (4)0.7448 (6)0.3781 (3)0.0353 (16)
C6−0.1359 (4)0.7030 (7)0.3983 (3)0.0497 (19)
H6−0.13270.64020.42160.060*
C7−0.2066 (5)0.7536 (8)0.3844 (4)0.065 (3)
H7−0.25030.72270.39780.079*
C8−0.2124 (4)0.8471 (8)0.3516 (3)0.060 (2)
H8−0.25970.88200.34340.072*
C9−0.1483 (4)0.8905 (8)0.3305 (3)0.059 (2)
H9−0.15230.95490.30800.071*
C10−0.0775 (4)0.8385 (7)0.3426 (2)0.0458 (18)
H10−0.03450.86580.32730.055*
C110.1086 (4)0.8273 (7)0.4944 (2)0.0412 (16)
H110.11470.74420.49920.049*
C120.1037 (4)0.8995 (7)0.5356 (2)0.0483 (19)
H120.10460.86550.56760.058*
C130.0976 (4)1.0214 (8)0.5296 (3)0.054 (2)
H130.09581.07240.55730.065*
C140.0939 (4)1.0684 (7)0.4814 (3)0.0498 (19)
H140.08871.15170.47660.060*
C150.0978 (4)0.9916 (6)0.4402 (2)0.0360 (15)
C160.0931 (4)1.0276 (6)0.3870 (2)0.0372 (15)
C170.0809 (4)1.1486 (7)0.3711 (3)0.054 (2)
H170.07701.21020.39460.065*
C180.0749 (5)1.1744 (8)0.3212 (4)0.065 (2)
H180.06611.25360.31030.078*
C190.0820 (4)1.0820 (8)0.2866 (3)0.055 (2)
H190.07851.09970.25250.066*
C200.0940 (4)0.9656 (7)0.3021 (3)0.0435 (17)
H200.09800.90500.27810.052*
C210.1005 (3)0.9341 (6)0.3536 (2)0.0328 (14)
C220.2299 (4)0.8077 (6)0.3802 (2)0.0330 (14)
C230.2771 (4)0.8709 (6)0.4162 (2)0.0388 (16)
H230.25680.90120.44520.047*
C240.3538 (4)0.8875 (6)0.4080 (3)0.0417 (17)
H240.38390.93100.43150.050*
C250.3867 (4)0.8421 (7)0.3667 (3)0.0475 (18)
H250.43840.85340.36250.057*
C260.3418 (4)0.7792 (6)0.3312 (3)0.0440 (18)
H260.36300.74920.30250.053*
C270.2634 (4)0.7606 (6)0.3388 (3)0.0361 (16)
C280.2131 (4)0.6904 (6)0.3034 (2)0.0350 (15)
C290.2321 (4)0.6370 (7)0.2595 (3)0.0487 (18)
H290.28060.64850.24810.058*
C300.1803 (5)0.5667 (7)0.2323 (3)0.056 (2)
H300.19380.52940.20290.067*
C310.1093 (4)0.5521 (8)0.2487 (3)0.055 (2)
H310.07390.50270.23130.067*
C320.0902 (4)0.6121 (7)0.2918 (3)0.051 (2)
H320.04100.60320.30260.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir0.02407 (15)0.03860 (17)0.02744 (14)−0.00330 (11)0.00326 (9)−0.00461 (11)
N10.027 (3)0.035 (3)0.040 (3)−0.008 (3)0.004 (2)−0.004 (3)
N20.031 (3)0.035 (3)0.044 (3)−0.006 (3)0.010 (2)−0.009 (3)
N30.039 (3)0.034 (3)0.027 (3)−0.001 (3)0.006 (2)−0.007 (2)
N40.021 (3)0.048 (3)0.025 (3)−0.001 (3)0.006 (2)−0.006 (2)
N50.029 (3)0.052 (3)0.027 (3)−0.009 (3)0.002 (2)−0.002 (3)
C10.028 (4)0.044 (4)0.046 (4)−0.001 (3)0.006 (3)−0.009 (3)
C20.046 (5)0.041 (4)0.060 (5)−0.003 (4)0.014 (4)0.007 (4)
C30.053 (5)0.047 (4)0.057 (5)0.010 (4)0.001 (4)0.004 (4)
C40.030 (4)0.056 (5)0.060 (5)0.008 (4)0.004 (3)−0.005 (4)
C50.024 (4)0.044 (4)0.038 (4)0.001 (3)0.006 (3)−0.009 (3)
C60.039 (4)0.043 (4)0.068 (5)0.000 (4)0.016 (4)0.005 (4)
C70.027 (4)0.079 (6)0.091 (7)−0.004 (4)0.012 (4)−0.001 (5)
C80.038 (4)0.080 (6)0.062 (5)0.014 (5)−0.003 (4)−0.005 (5)
C90.040 (4)0.088 (6)0.049 (5)0.007 (5)−0.001 (4)0.017 (4)
C100.029 (4)0.068 (5)0.041 (4)0.002 (4)0.006 (3)0.001 (4)
C110.036 (4)0.051 (4)0.037 (4)0.001 (4)0.003 (3)0.001 (3)
C120.044 (4)0.074 (6)0.027 (4)−0.002 (4)0.006 (3)−0.011 (4)
C130.047 (5)0.077 (6)0.038 (4)0.000 (4)0.000 (3)−0.023 (4)
C140.047 (5)0.052 (5)0.050 (4)0.007 (4)0.001 (4)−0.011 (4)
C150.024 (3)0.046 (4)0.039 (4)0.002 (3)0.004 (3)−0.007 (3)
C160.028 (3)0.045 (4)0.039 (4)0.002 (3)0.003 (3)0.004 (3)
C170.048 (5)0.049 (5)0.067 (5)0.003 (4)0.007 (4)0.005 (4)
C180.047 (5)0.058 (5)0.091 (7)0.005 (5)0.004 (5)0.032 (5)
C190.037 (4)0.077 (6)0.052 (5)−0.001 (4)0.007 (3)0.021 (4)
C200.035 (4)0.056 (5)0.039 (4)−0.006 (4)0.005 (3)0.005 (3)
C210.026 (3)0.029 (3)0.045 (4)−0.002 (3)0.013 (3)0.003 (3)
C220.030 (4)0.036 (3)0.033 (3)−0.004 (3)0.001 (3)0.007 (3)
C230.030 (4)0.047 (4)0.040 (4)−0.004 (3)0.001 (3)−0.008 (3)
C240.030 (4)0.046 (4)0.048 (4)−0.005 (3)−0.008 (3)0.004 (3)
C250.021 (3)0.062 (5)0.059 (5)−0.003 (4)−0.001 (3)0.003 (4)
C260.032 (4)0.048 (4)0.053 (4)0.001 (3)0.016 (3)−0.004 (3)
C270.033 (4)0.035 (4)0.041 (4)0.002 (3)0.006 (3)−0.003 (3)
C280.029 (3)0.046 (4)0.031 (3)0.004 (3)0.006 (3)0.002 (3)
C290.046 (4)0.058 (5)0.044 (4)0.002 (4)0.015 (3)−0.005 (4)
C300.059 (5)0.068 (5)0.040 (4)0.018 (5)−0.002 (4)−0.020 (4)
C310.045 (5)0.082 (6)0.038 (4)0.007 (4)−0.010 (3)−0.029 (4)
C320.037 (4)0.063 (5)0.054 (5)−0.003 (4)0.004 (3)−0.025 (4)

Geometric parameters (Å, °)

Ir—C222.012 (6)C12—H120.9300
Ir—C212.016 (6)C13—C141.383 (10)
Ir—N52.030 (5)C13—H130.9300
Ir—N42.049 (5)C14—C151.394 (9)
Ir—N32.079 (5)C14—H140.9300
Ir—N12.204 (5)C15—C161.469 (9)
N1—N21.293 (7)C16—C211.374 (9)
N1—C51.438 (9)C16—C171.411 (10)
N2—C11.324 (8)C17—C181.361 (11)
N3—C41.336 (8)C17—H170.9300
N3—C11.377 (8)C18—C191.384 (12)
N4—C111.339 (8)C18—H180.9300
N4—C151.355 (9)C19—C201.360 (10)
N5—C321.362 (8)C19—H190.9300
N5—C281.370 (8)C20—C211.417 (9)
C1—C21.429 (9)C20—H200.9300
C2—C31.389 (11)C22—C271.383 (10)
C2—H20.9300C22—C231.415 (8)
C3—C41.423 (10)C23—C241.389 (9)
C3—H30.9300C23—H230.9300
C4—H40.9300C24—C251.368 (9)
C5—C61.364 (10)C24—H240.9300
C5—C101.400 (10)C25—C261.382 (10)
C6—C71.392 (11)C25—H250.9300
C6—H60.9300C26—C271.418 (11)
C7—C81.352 (12)C26—H260.9300
C7—H70.9300C27—C281.474 (9)
C8—C91.373 (11)C28—C291.369 (9)
C8—H80.9300C29—C301.371 (10)
C9—C101.390 (9)C29—H290.9300
C9—H90.9300C30—C311.355 (11)
C10—H100.9300C30—H300.9300
C11—C121.364 (9)C31—C321.384 (9)
C11—H110.9300C31—H310.9300
C12—C131.357 (11)C32—H320.9300
C22—Ir—C2185.1 (2)C13—C12—H12120.3
C22—Ir—N579.7 (2)C11—C12—H12120.3
C21—Ir—N596.0 (2)C12—C13—C14118.7 (7)
C22—Ir—N494.9 (2)C12—C13—H13120.6
C21—Ir—N479.4 (2)C14—C13—H13120.6
N5—Ir—N4173.2 (2)C13—C14—C15120.3 (7)
C22—Ir—N396.8 (2)C13—C14—H14119.9
C21—Ir—N3174.5 (2)C15—C14—H14119.9
N5—Ir—N389.5 (2)N4—C15—C14119.6 (6)
N4—Ir—N395.3 (2)N4—C15—C16113.8 (6)
C22—Ir—N1170.6 (2)C14—C15—C16126.5 (7)
C21—Ir—N1104.0 (2)C21—C16—C17122.1 (6)
N5—Ir—N197.2 (2)C21—C16—C15114.9 (6)
N4—Ir—N188.74 (19)C17—C16—C15123.0 (7)
N3—Ir—N174.2 (2)C18—C17—C16119.6 (8)
N2—N1—C5112.0 (5)C18—C17—H17120.2
N2—N1—Ir115.9 (4)C16—C17—H17120.2
C5—N1—Ir131.7 (4)C17—C18—C19119.6 (8)
N1—N2—C1114.7 (6)C17—C18—H18120.2
C4—N3—C1106.4 (6)C19—C18—H18120.2
C4—N3—Ir140.1 (5)C20—C19—C18120.7 (7)
C1—N3—Ir113.5 (4)C20—C19—H19119.6
C11—N4—C15118.9 (6)C18—C19—H19119.6
C11—N4—Ir125.1 (5)C19—C20—C21121.8 (7)
C15—N4—Ir115.9 (4)C19—C20—H20119.1
C32—N5—C28117.0 (6)C21—C20—H20119.1
C32—N5—Ir125.3 (5)C16—C21—C20116.1 (6)
C28—N5—Ir117.5 (4)C16—C21—Ir115.7 (5)
N2—C1—N3121.5 (6)C20—C21—Ir128.1 (5)
N2—C1—C2128.1 (7)C27—C22—C23117.9 (6)
N3—C1—C2110.3 (6)C27—C22—Ir115.0 (5)
C3—C2—C1105.6 (7)C23—C22—Ir127.0 (5)
C3—C2—H2127.2C24—C23—C22119.6 (6)
C1—C2—H2127.2C24—C23—H23120.2
C2—C3—C4106.3 (6)C22—C23—H23120.2
C2—C3—H3126.9C25—C24—C23122.4 (6)
C4—C3—H3126.9C25—C24—H24118.8
N3—C4—C3111.4 (6)C23—C24—H24118.8
N3—C4—H4124.3C24—C25—C26119.0 (6)
C3—C4—H4124.3C24—C25—H25120.5
C6—C5—C10118.8 (7)C26—C25—H25120.5
C6—C5—N1122.3 (6)C25—C26—C27119.6 (7)
C10—C5—N1118.8 (6)C25—C26—H26120.2
C5—C6—C7120.5 (8)C27—C26—H26120.2
C5—C6—H6119.8C22—C27—C26121.4 (6)
C7—C6—H6119.8C22—C27—C28116.2 (6)
C8—C7—C6120.8 (9)C26—C27—C28122.4 (7)
C8—C7—H7119.6N5—C28—C29121.0 (6)
C6—C7—H7119.6N5—C28—C27111.6 (6)
C7—C8—C9119.8 (8)C29—C28—C27127.3 (7)
C7—C8—H8120.1C28—C29—C30120.6 (7)
C9—C8—H8120.1C28—C29—H29119.7
C8—C9—C10120.3 (8)C30—C29—H29119.7
C8—C9—H9119.9C31—C30—C29119.5 (7)
C10—C9—H9119.9C31—C30—H30120.3
C9—C10—C5119.7 (7)C29—C30—H30120.3
C9—C10—H10120.1C30—C31—C32118.9 (7)
C5—C10—H10120.1C30—C31—H31120.6
N4—C11—C12123.1 (7)C32—C31—H31120.6
N4—C11—H11118.5N5—C32—C31122.7 (7)
C12—C11—H11118.5N5—C32—H32118.6
C13—C12—C11119.4 (7)C31—C32—H32118.6
C21—Ir—N1—N2−171.3 (4)C11—N4—C15—C14−0.4 (9)
N5—Ir—N1—N290.7 (4)Ir—N4—C15—C14−175.4 (5)
N4—Ir—N1—N2−92.6 (4)C11—N4—C15—C16−178.9 (6)
N3—Ir—N1—N23.3 (4)Ir—N4—C15—C166.0 (7)
C21—Ir—N1—C51.0 (6)C13—C14—C15—N40.2 (11)
N5—Ir—N1—C5−97.1 (6)C13—C14—C15—C16178.6 (7)
N4—Ir—N1—C579.7 (6)N4—C15—C16—C21−3.1 (9)
N3—Ir—N1—C5175.5 (6)C14—C15—C16—C21178.4 (7)
C5—N1—N2—C1−177.5 (5)N4—C15—C16—C17176.2 (6)
Ir—N1—N2—C1−3.7 (7)C14—C15—C16—C17−2.3 (12)
C22—Ir—N3—C42.4 (7)C21—C16—C17—C181.2 (12)
N5—Ir—N3—C482.0 (7)C15—C16—C17—C18−178.1 (7)
N4—Ir—N3—C4−93.2 (7)C16—C17—C18—C19−1.0 (12)
N1—Ir—N3—C4179.6 (7)C17—C18—C19—C200.8 (12)
C22—Ir—N3—C1−179.4 (4)C18—C19—C20—C21−0.7 (12)
N5—Ir—N3—C1−99.8 (4)C17—C16—C21—C20−1.0 (10)
N4—Ir—N3—C185.0 (4)C15—C16—C21—C20178.3 (6)
N1—Ir—N3—C1−2.2 (4)C17—C16—C21—Ir179.4 (6)
C22—Ir—N4—C11−95.9 (5)C15—C16—C21—Ir−1.3 (8)
C21—Ir—N4—C11−180.0 (5)C19—C20—C21—C160.8 (10)
N3—Ir—N4—C111.5 (5)C19—C20—C21—Ir−179.7 (5)
N1—Ir—N4—C1175.5 (5)C22—Ir—C21—C16−92.5 (5)
C22—Ir—N4—C1578.9 (5)N5—Ir—C21—C16−171.6 (5)
C21—Ir—N4—C15−5.2 (4)N4—Ir—C21—C163.4 (5)
N3—Ir—N4—C15176.2 (4)N1—Ir—C21—C1689.4 (5)
N1—Ir—N4—C15−109.8 (5)C22—Ir—C21—C2088.0 (6)
C22—Ir—N5—C32174.5 (6)N5—Ir—C21—C208.9 (6)
C21—Ir—N5—C32−101.6 (6)N4—Ir—C21—C20−176.1 (6)
N3—Ir—N5—C3277.4 (6)N1—Ir—C21—C20−90.1 (6)
N1—Ir—N5—C323.4 (6)C21—Ir—C22—C27−97.3 (5)
C22—Ir—N5—C28−0.1 (5)N5—Ir—C22—C27−0.3 (5)
C21—Ir—N5—C2883.8 (5)N4—Ir—C22—C27−176.2 (5)
N3—Ir—N5—C28−97.2 (5)N3—Ir—C22—C2787.9 (5)
N1—Ir—N5—C28−171.2 (5)C21—Ir—C22—C2386.6 (6)
N1—N2—C1—N31.8 (9)N5—Ir—C22—C23−176.4 (6)
N1—N2—C1—C2−179.9 (6)N4—Ir—C22—C237.8 (6)
C4—N3—C1—N2179.9 (6)N3—Ir—C22—C23−88.2 (6)
Ir—N3—C1—N21.1 (8)C27—C22—C23—C242.4 (10)
C4—N3—C1—C21.4 (7)Ir—C22—C23—C24178.3 (5)
Ir—N3—C1—C2−177.4 (4)C22—C23—C24—C25−1.7 (11)
N2—C1—C2—C3−179.7 (7)C23—C24—C25—C261.1 (11)
N3—C1—C2—C3−1.3 (8)C24—C25—C26—C27−1.4 (11)
C1—C2—C3—C40.6 (8)C23—C22—C27—C26−2.7 (10)
C1—N3—C4—C3−1.0 (8)Ir—C22—C27—C26−179.1 (5)
Ir—N3—C4—C3177.3 (5)C23—C22—C27—C28177.1 (6)
C2—C3—C4—N30.2 (8)Ir—C22—C27—C280.7 (8)
N2—N1—C5—C612.3 (9)C25—C26—C27—C222.2 (11)
Ir—N1—C5—C6−160.2 (5)C25—C26—C27—C28−177.6 (7)
N2—N1—C5—C10−167.2 (6)C32—N5—C28—C296.0 (10)
Ir—N1—C5—C1020.3 (9)Ir—N5—C28—C29−179.0 (5)
C10—C5—C6—C7−0.7 (12)C32—N5—C28—C27−174.5 (6)
N1—C5—C6—C7179.8 (7)Ir—N5—C28—C270.5 (8)
C5—C6—C7—C8−1.8 (14)C22—C27—C28—N5−0.8 (9)
C6—C7—C8—C92.1 (14)C26—C27—C28—N5179.0 (6)
C7—C8—C9—C100.1 (13)C22—C27—C28—C29178.7 (7)
C8—C9—C10—C5−2.6 (12)C26—C27—C28—C29−1.5 (11)
C6—C5—C10—C92.8 (11)N5—C28—C29—C30−5.4 (11)
N1—C5—C10—C9−177.7 (6)C27—C28—C29—C30175.2 (7)
C15—N4—C11—C121.5 (10)C28—C29—C30—C311.2 (12)
Ir—N4—C11—C12176.0 (5)C29—C30—C31—C322.1 (13)
N4—C11—C12—C13−2.4 (11)C28—N5—C32—C31−2.6 (11)
C11—C12—C13—C142.1 (11)Ir—N5—C32—C31−177.2 (6)
C12—C13—C14—C15−1.1 (12)C30—C31—C32—N5−1.4 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2539).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Baldo, M. A., Thompson, M. E. & Forrest, S. R. (2000). Nature (London), 403, 750–753. [PubMed]
  • Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X., Liao, J. L., Liang, Y. M., Ahmed, M. O., Tseng, H. E. & Chen, S. A. (2003). J. Am. Chem. Soc.125, 636–637. [PubMed]
  • Chin, K.-F., Cheung, K.-K., Yip, H.-K., Mak, T. C. W. & Che, C. M. (1995). J. Chem. Soc. Dalton Trans. pp. 657–665.
  • Davies, D. L., Donald, S. M. A., Al-Duaij, O., Fawcett, J., Little, C. & Macgregor, S. A. (2006). Organometallics, 25, 5976–5978.
  • Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001). J. Am. Chem. Soc.123, 4304–4312. [PubMed]
  • Pomestcheako, I. E., Luman, C. R., Hissler, M. E., Ziessel, R. & Castellano, F. N. (2003). Inorg. Chem.42, 1394–1396. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography