PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o636.
Published online 2008 February 27. doi:  10.1107/S1600536808005151
PMCID: PMC2960813

(3R,5S)-5(3)-Carb­oxy-3,4,5,6-tetra­hydro-2H-1,4-thia­zin-4-ium-3(5)-carboxyl­ate

Abstract

The molecule of the zwitterionic title compound, C6H9NO4S, which lies on a mirror plane, shows a puckered chair conformation of the six-membered ring with the S and N atoms out of the mean plane of the other four C atoms by 0.929 (2) and 0.647 (2) Å, respectively. The ionized carboxyl group is equatorially oriented. The hydrogen-bonding network includes very short O—H(...)O [2.470 (2) Å] and N—H(...)S [3.471 (2) and 3.416 (2) Å] inter­molecular contacts.

Related literature

For the detection of 1,4-thio­morpholine-3,5-dicarboxylic acid (THT) as a normal component in bovine brains and human urine, see: Cavallini, Pecci et al. (1985 [triangle]); Cavallini, Matarese et al. (1985 [triangle]); Matarese et al. (1987 [triangle]); Cavallini et al. (1991 [triangle]). For the previous structure determination of the (3R,5R) epimer of THT, see: Portalone et al. (1993 [triangle]). For related literature, see: Allen et al. (1997 [triangle]); Paglialunga Paradisi et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o636-scheme1.jpg

Experimental

Crystal data

  • C6H9NO4S
  • M r = 191.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o636-efi1.jpg
  • a = 6.1641 (8) Å
  • b = 9.323 (1) Å
  • c = 12.760 (1) Å
  • V = 733.29 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 298 (2) K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Huber CS four-circle diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.916, T max = 0.958
  • 1840 measured reflections
  • 1060 independent reflections
  • 998 reflections with I > 2σ(I)
  • R int = 0.02
  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.094
  • S = 1.07
  • 1060 reflections
  • 76 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: XCS (Colapietro et al., 1992 [triangle]); cell refinement: XCS; data reduction: XCS; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: WinGX (Farrugia, 1999 [triangle]); software used to prepare material for publication: WinGX.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005151/rz2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005151/rz2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank MIUR (Rome) for 2006 financial support of the project ‘X-ray diffractometry and spectrometry’.

supplementary crystallographic information

Comment

The detection of 1,4-thiomorpholine-3,5-dicarboxylic acid (THT) as normal component in bovin brain (Cavallini, Pecci et al., 1985) and human urine (Matarese et al., 1987) has stimulated the investigation of the biological role played by this unusual cyclic, sulfur containing imino acid (Cavallini et al., 1991). Here we report the x-ray structure determination of the (3R,5S) epymer (THTC). The asymmetric unit of the title compound comprises a half-zwitterion disposed about a mirror plane along the line joining atoms S1 and N4 and perpendicular to the plane formed by C2, C3, C2ì and C3ì [symmetry code: (i) x, y, -z + 1/2]. From Fig. 1 it appears that the six-membered ring adopts a puckered chair conformation with the carboxyl group in equatorial position. The hydrogen-bonding network (Fig. 2) includes very short O—-H···O and N—-H···S (Allen et al., 1997) intermolecular contacts (Table 1).

Experimental

(3R,5S)-tetrahydro-2H-1,4-thiazine-3,5-dicarboxylic acid was obtained as described previously (Paglialunga Paradisi et al., 1990). Crystals were grown from a water solution (0.1 mmol in ca 6 ml) by slow evaporation of the solvent.

Refinement

All H atoms were found in a difference Fourier map. Positional and thermal parameters of all H atoms but H1, which lies in special position and for which Uiso value was set equal to 2.0 Ueq(O1), were refined isotropically.

Figures

Fig. 1.
The molecular component in the title compound showing the zwitterion lying on a crystallographic mirror plane and the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary ...
Fig. 2.
Packing diagram of the title compound viewed approximately down the a axis. H atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H21, H22, H41 and H42 are omitted. H bonding is indicated by dashed lines.

Crystal data

C6H9NO4SF000 = 400
Mr = 191.21Dx = 1.732 Mg m3
Orthorhombic, PbnmMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2c 2abCell parameters from 87 reflections
a = 6.1641 (8) Åθ = 20–25º
b = 9.323 (1) ŵ = 0.41 mm1
c = 12.760 (1) ÅT = 298 (2) K
V = 733.29 (14) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm

Data collection

Huber CS four-circle diffractometerRint = 0.02
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 3.2º
T = 298(2) Kh = 0→8
ω scansk = 0→13
Absorption correction: ψ scan(North et al., 1968)l = 0→17
Tmin = 0.916, Tmax = 0.9583 standard reflections
1840 measured reflections every 97 reflections
1060 independent reflections intensity decay: 2%
998 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094  w = 1/[σ2(Fo2) + (0.064P)2 + 0.2054P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1060 reflectionsΔρmax = 0.25 e Å3
76 parametersΔρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.04543 (7)0.05914 (4)0.25000.01738 (15)
O1−0.04198 (17)−0.42620 (10)0.07779 (8)0.0235 (2)
H10.0000−0.50000.00000.049*
O2−0.04168 (16)−0.23791 (11)−0.03208 (7)0.0233 (2)
N4−0.0505 (2)−0.27615 (15)0.25000.0152 (3)
H410.077 (5)−0.316 (4)0.25000.046 (9)*
H42−0.129 (5)−0.344 (3)0.25000.035 (7)*
C20.0797 (2)−0.06777 (12)0.14454 (10)0.0191 (3)
H210.232 (3)−0.105 (2)0.1441 (12)0.031 (4)*
H220.054 (3)−0.012 (2)0.0759 (16)0.029 (5)*
C3−0.08019 (18)−0.19183 (12)0.15032 (9)0.0154 (2)
H3−0.232 (3)−0.1555 (18)0.1489 (11)0.019 (4)*
C7−0.05172 (18)−0.29148 (12)0.05503 (10)0.0167 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0253 (2)0.0108 (2)0.0160 (2)−0.00097 (13)0.0000.000
O10.0403 (6)0.0134 (4)0.0170 (4)0.0028 (3)0.0010 (4)−0.0023 (3)
O20.0352 (5)0.0204 (5)0.0142 (4)−0.0015 (4)−0.0003 (3)0.0006 (3)
N40.0220 (7)0.0109 (6)0.0127 (6)−0.0010 (5)0.0000.000
C20.0275 (6)0.0142 (5)0.0156 (5)−0.0037 (4)0.0027 (4)−0.0009 (4)
C30.0211 (5)0.0126 (4)0.0124 (5)0.0003 (4)−0.0012 (4)0.0006 (4)
C70.0198 (5)0.0156 (5)0.0146 (5)−0.0008 (4)−0.0011 (4)−0.0026 (4)

Geometric parameters (Å, °)

S1—C21.8043 (12)N4—H410.87 (3)
S1—C2i1.8043 (12)N4—H420.80 (3)
O1—C71.2905 (14)C2—C31.5211 (16)
O1—H11.2352C2—H211.00 (2)
O2—C71.2201 (16)C2—H221.03 (2)
N4—C3i1.5064 (13)C3—C71.5403 (16)
N4—C31.5064 (13)C3—H30.997 (17)
C2—S1—C2i96.46 (8)S1—C2—H22106.5 (11)
C7—O1—H1111.77H21—C2—H22108.4 (13)
C3i—N4—C3115.20 (12)N4—C3—C2111.04 (10)
C3i—N4—H41109.5 (10)N4—C3—C7109.75 (9)
C3—N4—H41109.5 (10)C2—C3—C7110.28 (9)
C3i—N4—H42109.9 (9)N4—C3—H3107.9 (8)
C3—N4—H42109.9 (9)C2—C3—H3110.5 (10)
H41—N4—H42102 (3)C7—C3—H3107.3 (9)
C3—C2—S1112.75 (8)O2—C7—O1126.95 (11)
C3—C2—H21110.2 (12)O2—C7—C3118.55 (11)
S1—C2—H21109.9 (10)O1—C7—C3114.50 (10)
C3—C2—H22108.9 (10)
C2i—S1—C2—C356.74 (12)N4—C3—C7—O2−170.39 (11)
C3i—N4—C3—C259.40 (16)C2—C3—C7—O2−47.76 (14)
C3i—N4—C3—C7−178.42 (8)N4—C3—C7—O19.90 (14)
S1—C2—C3—N4−61.40 (12)C2—C3—C7—O1132.53 (11)
S1—C2—C3—C7176.73 (8)

Symmetry codes: (i) x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O1ii1.241.242.4704 (19)180.00 (9)
N4—H41···S1iii0.87 (3)2.60 (3)3.4713 (15)179 (3)
N4—H42···S1iv0.80 (3)2.72 (3)3.4155 (16)147 (3)

Symmetry codes: (ii) −x, −y−1, −z; (iii) −x+1/2, y−1/2, z; (iv) −x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2198).

References

  • Allen, F. H., Bird, C. M., Rowland, R. S. & Raithby, P. R. (1997). Acta Cryst. B53, 696–701.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Cavallini, D., Matarese, R. M., Pecci, L. & Ricci, G. (1985). FEBS Lett.192, 247–250. [PubMed]
  • Cavallini, D., Pecci, L., Matarese, R. M., Ricci, G. & Achilli, M. (1985). J. Biol. Chem.260, 15577–15579. [PubMed]
  • Cavallini, D., Ricci, G., Dupré, S., Pecci, L., Costa, M., Matarese, R. M., Pensa, B., Antonucci, A., Salinas, S. P. & Fontana, M. (1991). Eur. J. Biochem.202, 217–223. [PubMed]
  • Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell, J. R. (1992). J. Appl. Cryst.25, 192–194.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Matarese, R. M., Pecci, L., Ricci, G., Nardini, M., Antonucci, A. & Cavallini, D. (1987). Proc. Natl Acad. Sci. USA, 84, 5111–5114. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Paglialunga Paradisi, M., Pagani Zecchini, G., Torrini, I. & Lucente, G. (1990). J. Heterocycl. Chem.27, 1661–1664.
  • Portalone, G., Cassetta, A., Pagani Zecchini, G. & Torrini, I. (1993). Acta Cryst. C49, 976–978.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography