PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o596.
Published online 2008 February 15. doi:  10.1107/S1600536808000330
PMCID: PMC2960812

N,4-Dimethyl-N-(4-nitro­benz­yl)benzene­sulfonamide

Abstract

In the title compound, C15H16N2O4S, there is a dihedral angle of 63.30 (8)° between the nitro­benzyl and benzene rings, which are separated by a sulfonamide unit The crystal packing is stabilized by a C—H(...)O inter­action.

Related literature

For the use of aromatic nitro and amine compounds as precursors in dye synthesis, see: Lauwiner et al. (1998 [triangle]); Yang et al. (2004 [triangle]). For the preparation of the title compound, see: Andersen et al. (1988 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o596-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O4S
  • M r = 320.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o596-efi1.jpg
  • a = 9.5694 (19) Å
  • b = 6.1335 (12) Å
  • c = 26.126 (5) Å
  • β = 100.03 (3)°
  • V = 1510.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 113 (2) K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2003 [triangle]) T min = 0.955, T max = 0.977
  • 8935 measured reflections
  • 2661 independent reflections
  • 2188 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.123
  • S = 1.10
  • 2661 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2003 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808000330/sj2454sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808000330/sj2454Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Aromatic amines are widely employed for organic synthesis, especially as dye intermediates. One method for preparing aromatic amines is reduction of the corresponding aromatic nitro compound (Lauwiner et al., 1998). In our recent work, the title compound (I), Fig. 1, was reduced to the corresponding aromatic amine for potential use as an intermediate in the synthesis of Acid Blue 264 dye according to Yang et al. (2004).

In (I), all bonds lengths and angles are normal (Allen et al., 1987). The dihedral angle between the two aryl rings is 63.30 (8) Å. The distances of S1—C1 and S1—N1 are 1.762 (3) and 1.637 (2) Å respectively. The neighboring molecules are linked together by weak C—H···O hydrogen bonds, Table 1.

Experimental

The title compound (I) was synthesized according to the procedure of Andersen et al. (1988). Colorless single crystals (m.p. 403–404 K) were obtained by slow evaporation of a solution in absolute alcohol.

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.
Fig. 2.
The crystal packing of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C15H16N2O4SF000 = 672
Mr = 320.36Dx = 1.409 Mg m3
Monoclinic, P21/cMelting point = 403–404 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 9.5694 (19) ÅCell parameters from 3609 reflections
b = 6.1335 (12) Åθ = 2.2–27.9º
c = 26.126 (5) ŵ = 0.23 mm1
β = 100.03 (3)ºT = 113 (2) K
V = 1510.0 (5) Å3Block, colorless
Z = 40.20 × 0.18 × 0.10 mm

Data collection

Rigaku Saturn diffractometer2661 independent reflections
Radiation source: fine-focus sealed tube2188 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
Detector resolution: 7.31 pixels mm-1θmax = 25.0º
T = 113(2) Kθmin = 2.2º
ω scansh = −11→11
Absorption correction: multi-scan(CrystalClear; Rigaku, 2003)k = −6→7
Tmin = 0.955, Tmax = 0.977l = −31→26
8935 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.123  w = 1/[σ2(Fo2) + (0.0454P)2 + 1.1085P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2661 reflectionsΔρmax = 0.36 e Å3
201 parametersΔρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.12405 (8)0.46188 (11)0.13266 (3)0.0293 (2)
O10.0775 (3)0.6688 (3)0.14746 (9)0.0531 (7)
O20.2167 (2)0.4497 (4)0.09498 (8)0.0445 (6)
O3−0.5173 (2)−0.0352 (3)−0.10469 (8)0.0334 (5)
O4−0.5383 (2)−0.3199 (3)−0.05751 (8)0.0329 (5)
N1−0.0187 (2)0.3232 (3)0.10887 (9)0.0221 (5)
N2−0.4801 (2)−0.1489 (4)−0.06589 (9)0.0259 (5)
C10.2079 (3)0.3328 (4)0.19015 (11)0.0210 (6)
C20.2046 (3)0.4289 (5)0.23762 (12)0.0316 (7)
H20.15300.56010.23950.038*
C30.2765 (3)0.3336 (5)0.28224 (12)0.0311 (7)
H30.27380.40040.31490.037*
C40.3529 (3)0.1419 (4)0.28053 (11)0.0251 (6)
C50.3516 (3)0.0458 (4)0.23231 (12)0.0285 (7)
H50.4007−0.08780.23040.034*
C60.2809 (3)0.1393 (4)0.18703 (11)0.0264 (6)
H60.28230.07230.15430.032*
C70.4382 (3)0.0457 (5)0.32894 (12)0.0364 (8)
H7A0.53670.09590.33270.055*
H7B0.4356−0.11370.32650.055*
H7C0.39810.09220.35920.055*
C8−0.1208 (3)0.2999 (7)0.14427 (14)0.0496 (10)
H8A−0.21390.26070.12440.074*
H8B−0.12820.43810.16240.074*
H8C−0.08860.18520.16970.074*
C90.0035 (3)0.1211 (4)0.08077 (12)0.0282 (7)
H9A0.03010.00200.10620.034*
H9B0.08310.14280.06160.034*
C10−0.1269 (3)0.0558 (4)0.04315 (11)0.0222 (6)
C11−0.1885 (3)−0.1471 (4)0.04786 (11)0.0259 (6)
H11−0.1499−0.24030.07580.031*
C12−0.3050 (3)−0.2153 (4)0.01256 (11)0.0235 (6)
H12−0.3473−0.35340.01590.028*
C13−0.3577 (3)−0.0763 (4)−0.02765 (11)0.0215 (6)
C14−0.2999 (3)0.1272 (4)−0.03363 (11)0.0231 (6)
H14−0.33860.2195−0.06170.028*
C15−0.1842 (3)0.1921 (4)0.00249 (11)0.0223 (6)
H15−0.14350.3317−0.00060.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0358 (4)0.0223 (4)0.0238 (4)−0.0080 (3)−0.0117 (3)0.0051 (3)
O10.0816 (18)0.0182 (11)0.0437 (16)0.0046 (10)−0.0330 (13)−0.0008 (9)
O20.0393 (12)0.0675 (16)0.0242 (13)−0.0274 (11)−0.0015 (10)0.0159 (11)
O30.0316 (11)0.0426 (12)0.0224 (12)−0.0005 (9)−0.0054 (9)0.0013 (9)
O40.0290 (11)0.0425 (12)0.0269 (12)−0.0163 (9)0.0041 (9)−0.0049 (9)
N10.0191 (11)0.0236 (12)0.0210 (14)−0.0015 (9)−0.0036 (10)−0.0023 (9)
N20.0232 (12)0.0347 (14)0.0199 (14)−0.0022 (10)0.0039 (10)−0.0082 (11)
C10.0172 (13)0.0232 (14)0.0192 (15)−0.0034 (10)−0.0060 (11)0.0046 (11)
C20.0344 (16)0.0269 (15)0.0291 (18)0.0094 (12)−0.0067 (14)−0.0033 (12)
C30.0319 (16)0.0401 (17)0.0188 (17)0.0110 (13)−0.0027 (13)−0.0033 (13)
C40.0195 (13)0.0292 (15)0.0257 (17)−0.0019 (11)0.0018 (12)0.0074 (12)
C50.0241 (14)0.0258 (15)0.0344 (19)0.0062 (11)0.0023 (13)0.0022 (13)
C60.0255 (14)0.0321 (15)0.0212 (16)0.0008 (12)0.0034 (12)−0.0032 (12)
C70.0321 (16)0.0421 (18)0.032 (2)0.0049 (13)−0.0044 (14)0.0127 (14)
C80.0212 (16)0.093 (3)0.034 (2)−0.0083 (17)0.0030 (15)−0.0152 (19)
C90.0248 (15)0.0227 (14)0.0340 (19)0.0016 (11)−0.0039 (13)−0.0031 (12)
C100.0193 (13)0.0219 (14)0.0238 (16)0.0008 (11)−0.0006 (12)−0.0048 (11)
C110.0250 (14)0.0254 (14)0.0252 (17)0.0027 (11)−0.0015 (12)0.0026 (12)
C120.0225 (14)0.0229 (14)0.0255 (17)−0.0025 (11)0.0051 (12)−0.0025 (11)
C130.0172 (13)0.0271 (14)0.0197 (16)−0.0013 (10)0.0016 (11)−0.0069 (11)
C140.0219 (14)0.0267 (14)0.0202 (16)0.0007 (11)0.0025 (12)0.0023 (11)
C150.0212 (14)0.0194 (13)0.0259 (17)−0.0024 (10)0.0033 (12)−0.0015 (11)

Geometric parameters (Å, °)

S1—O11.421 (2)C7—H7A0.9800
S1—O21.437 (2)C7—H7B0.9800
S1—N11.637 (2)C7—H7C0.9800
S1—C11.762 (3)C8—H8A0.9800
O3—N21.231 (3)C8—H8B0.9800
O4—N21.225 (3)C8—H8C0.9800
N1—C81.464 (4)C9—C101.502 (4)
N1—C91.475 (3)C9—H9A0.9900
N2—C131.470 (3)C9—H9B0.9900
C1—C21.378 (4)C10—C151.387 (4)
C1—C61.387 (4)C10—C111.392 (4)
C2—C31.376 (4)C11—C121.382 (4)
C2—H20.9500C11—H110.9500
C3—C41.390 (4)C12—C131.379 (4)
C3—H30.9500C12—H120.9500
C4—C51.389 (4)C13—C141.385 (4)
C4—C71.502 (4)C14—C151.382 (4)
C5—C61.381 (4)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—H60.9500
O1—S1—O2119.53 (15)C4—C7—H7C109.5
O1—S1—N1106.68 (13)H7A—C7—H7C109.5
O2—S1—N1106.66 (13)H7B—C7—H7C109.5
O1—S1—C1106.68 (14)N1—C8—H8A109.5
O2—S1—C1108.47 (13)N1—C8—H8B109.5
N1—S1—C1108.43 (12)H8A—C8—H8B109.5
C8—N1—C9113.7 (2)N1—C8—H8C109.5
C8—N1—S1114.5 (2)H8A—C8—H8C109.5
C9—N1—S1116.25 (17)H8B—C8—H8C109.5
O4—N2—O3123.8 (2)N1—C9—C10112.0 (2)
O4—N2—C13118.1 (2)N1—C9—H9A109.2
O3—N2—C13118.0 (2)C10—C9—H9A109.2
C2—C1—C6120.6 (3)N1—C9—H9B109.2
C2—C1—S1119.8 (2)C10—C9—H9B109.2
C6—C1—S1119.6 (2)H9A—C9—H9B107.9
C3—C2—C1119.6 (3)C15—C10—C11119.3 (2)
C3—C2—H2120.2C15—C10—C9120.9 (2)
C1—C2—H2120.2C11—C10—C9119.8 (2)
C2—C3—C4121.3 (3)C12—C11—C10121.1 (3)
C2—C3—H3119.3C12—C11—H11119.5
C4—C3—H3119.3C10—C11—H11119.5
C5—C4—C3117.8 (3)C13—C12—C11117.9 (2)
C5—C4—C7121.0 (3)C13—C12—H12121.1
C3—C4—C7121.2 (3)C11—C12—H12121.1
C6—C5—C4121.7 (3)C12—C13—C14122.9 (2)
C6—C5—H5119.1C12—C13—N2118.3 (2)
C4—C5—H5119.1C14—C13—N2118.9 (2)
C5—C6—C1118.8 (3)C15—C14—C13118.1 (3)
C5—C6—H6120.6C15—C14—H14121.0
C1—C6—H6120.6C13—C14—H14121.0
C4—C7—H7A109.5C14—C15—C10120.8 (2)
C4—C7—H7B109.5C14—C15—H15119.6
H7A—C7—H7B109.5C10—C15—H15119.6
O1—S1—N1—C8−56.7 (3)C2—C1—C6—C5−0.7 (4)
O2—S1—N1—C8174.5 (2)S1—C1—C6—C5177.0 (2)
C1—S1—N1—C857.9 (2)C8—N1—C9—C1066.9 (3)
O1—S1—N1—C9167.4 (2)S1—N1—C9—C10−156.8 (2)
O2—S1—N1—C938.6 (2)N1—C9—C10—C1560.7 (3)
C1—S1—N1—C9−78.0 (2)N1—C9—C10—C11−121.6 (3)
O1—S1—C1—C26.3 (3)C15—C10—C11—C120.5 (4)
O2—S1—C1—C2136.2 (2)C9—C10—C11—C12−177.3 (3)
N1—S1—C1—C2−108.3 (2)C10—C11—C12—C130.3 (4)
O1—S1—C1—C6−171.4 (2)C11—C12—C13—C14−0.6 (4)
O2—S1—C1—C6−41.4 (2)C11—C12—C13—N2179.0 (2)
N1—S1—C1—C674.0 (2)O4—N2—C13—C127.1 (4)
C6—C1—C2—C31.1 (4)O3—N2—C13—C12−172.3 (2)
S1—C1—C2—C3−176.6 (2)O4—N2—C13—C14−173.3 (2)
C1—C2—C3—C40.1 (5)O3—N2—C13—C147.3 (4)
C2—C3—C4—C5−1.6 (4)C12—C13—C14—C150.0 (4)
C2—C3—C4—C7176.3 (3)N2—C13—C14—C15−179.5 (2)
C3—C4—C5—C62.0 (4)C13—C14—C15—C100.8 (4)
C7—C4—C5—C6−175.9 (3)C11—C10—C15—C14−1.0 (4)
C4—C5—C6—C1−0.9 (4)C9—C10—C15—C14176.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.323.287 (4)166

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2454).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Andersen, K. K., Chumpradit, S. & McIntyre, D. J. (1988). J. Org. Chem.53, 4667–4675.
  • Bruker (1997). SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lauwiner, M., Rys, P. & Wissmann, J. (1998). Appl. Catal. A: Gen.172, 141–148.
  • Rigaku (2003). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, X. W. & Yang, W. (2004). Shanghai Dyestuffs, 32, 20–30.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography