PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o609.
Published online 2008 February 20. doi:  10.1107/S1600536807068390
PMCID: PMC2960808

N-(5-Chloro-3-methyl-1-phenyl­pyrazol-4-ylcarbon­yl)-N′-(2-methoxy­phen­yl)thio­urea

Abstract

In the title compound, C19H17ClN4O2S, the dihedral angle between the pyrazole and phenyl rings is 43.3 (3)°. The bridging unit between the pyrazole and methoxyphenyl rings is planar within 0.0169 Å and makes dihedral angles of 2.3 and 26.4°, respectively, with these two rings. This conformation is influenced by intramolecular N—H(...)O and N—H(...)Cl hydrogen bonds. The crystal packing is stabilized by C—H(...)π inter­actions.

Related literature

For related literature, see: Du et al. (2007 [triangle]); Saeed & Flörke (2007 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o609-scheme1.jpg

Experimental

Crystal data

  • C19H17ClN4O2S
  • M r = 400.88
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o609-efi1.jpg
  • a = 20.339 (2) Å
  • b = 7.4408 (9) Å
  • c = 12.7919 (15) Å
  • β = 107.029 (2)°
  • V = 1851.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 294 (2) K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.922, T max = 0.941
  • 10087 measured reflections
  • 3793 independent reflections
  • 3065 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.097
  • S = 1.04
  • 3793 reflections
  • 254 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807068390/bq2053sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807068390/bq2053Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Guiyang College (grant No. 2007012) for financial support.

supplementary crystallographic information

Comment

The molecular structure of (I) with the atom-numbering scheme is shown in Fig.1. The pyrazole ring makes dihedral angles of 43.3° and 24.5°, with C1—C6 and C13—C18 rings, respectively; these two six-membered rings are twisted by 19.6° with respect to each other. However, in the similar structure, N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N'-(4-methphenyl)thiourea (Du et al., 2007), the two phenyl rings deviate from the central pyrazole system with dihedral angles of 74.3° and 2.9°, respectively, the dihedral angle between them being 71.6°. All the bond lengths and angles are in the normal range, corresponding to the related references (Du et al., 2007; Saeed & Flörke, 2007; Wang et al., 2007). There also exist two intramolecular N—H···O and N—H···Cl hydrogen bonds and two C—H···pi interaction (Table 1.). Investigation on the packing pattern demonstrates that those discrete molecules are interconnected by slightly weak contacts C2—H2···Cg1 and C10—H10B···Cg2 [Cg1=C1—C6 and Cg2=C13—C18] into a two-dimensional network, as shown in Fig. 2.

Experimental

Powdered ammonium thiocyanate (15 mmol), 5-chloro-3-methyl-1-phenyl-pyrazole-4-carbonyl chloride (10 mmol), PEG-400 (0.15 mmol) and acetone (25 mL) were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 h. Then 2-methoxybenzenamine (9.5 mmol) was added, and the mixture was stirred for 5 h. The mixture was poured into water (20 mL). The resulting solid was filtered, dried and recrystallized from DMF-EtOH to give N-(5-chloro-3-methyl-1-phenyl pyrazole-4-ylcarbonyl)-N'-(2-methoxyphenyl)thiourea. Single crystals of the title compound were obtained by slow evaporation of a solution in DMF-EtOH(1:1,v/v).

Refinement

H atoms bonded to N atoms were located in a difference map and refined with distance restraint of N—H = 0.89 Å with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with the atom numbering scheme, showing N—H···O and N—H···Cl intramolecular hydrogen bonds.
Fig. 2.
The two-dimensional supramolecular framework showing the C—H···pi contacts [Cg1=C1—C6, Cg2=C13—C18].

Crystal data

C19H17ClN4O2SF000 = 832
Mr = 400.88Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 437 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 20.339 (2) ÅCell parameters from 5493 reflections
b = 7.4408 (9) Åθ = 2.7–26.4º
c = 12.7919 (15) ŵ = 0.34 mm1
β = 107.029 (2)ºT = 294 (2) K
V = 1851.0 (4) Å3Prism, colorless
Z = 40.24 × 0.22 × 0.18 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer3793 independent reflections
Radiation source: fine-focus sealed tube3065 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 294(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→25
Tmin = 0.922, Tmax = 0.941k = −9→7
10087 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097  w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4744P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3793 reflectionsΔρmax = 0.22 e Å3
254 parametersΔρmin = −0.23 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.32848 (2)0.38045 (8)0.78067 (4)0.05368 (16)
Cl10.39634 (2)0.49010 (7)0.47794 (3)0.04935 (14)
O10.16432 (6)0.5391 (2)0.46861 (10)0.0554 (4)
O20.06377 (6)0.3605 (2)0.62638 (10)0.0530 (3)
N10.32052 (6)0.59589 (19)0.27986 (10)0.0375 (3)
N20.25436 (7)0.6246 (2)0.21555 (11)0.0419 (3)
N30.27109 (7)0.4682 (2)0.57720 (11)0.0438 (4)
N40.19402 (7)0.4401 (2)0.67699 (11)0.0418 (3)
C10.43578 (9)0.6916 (3)0.27971 (15)0.0472 (4)
H10.44280.74520.34780.057*
C20.48659 (9)0.6974 (3)0.22681 (16)0.0523 (5)
H20.52840.75280.26070.063*
C30.47554 (9)0.6224 (3)0.12530 (16)0.0520 (5)
H30.50970.62760.09050.062*
C40.41394 (10)0.5393 (3)0.07479 (15)0.0542 (5)
H40.40640.49030.00540.065*
C50.36327 (9)0.5282 (3)0.12681 (14)0.0472 (4)
H50.32200.47000.09340.057*
C60.37472 (8)0.6047 (2)0.22901 (13)0.0371 (4)
C70.32183 (8)0.5520 (2)0.38253 (13)0.0357 (3)
C80.25474 (8)0.5552 (2)0.38879 (13)0.0363 (4)
C90.21508 (8)0.6007 (2)0.28072 (13)0.0384 (4)
C100.13868 (8)0.6187 (3)0.23440 (15)0.0495 (5)
H10A0.12760.65390.15900.074*
H10B0.12230.70820.27470.074*
H10C0.11720.50550.23980.074*
C110.22584 (8)0.5214 (2)0.47961 (13)0.0387 (4)
C120.25973 (8)0.4323 (2)0.67773 (13)0.0378 (4)
C130.16530 (8)0.4213 (2)0.76497 (13)0.0389 (4)
C140.20047 (9)0.4519 (3)0.87383 (14)0.0521 (5)
H140.24690.48160.89370.063*
C150.16671 (11)0.4384 (3)0.95325 (15)0.0604 (5)
H150.19050.45961.02620.072*
C160.09837 (11)0.3938 (3)0.92464 (16)0.0601 (5)
H160.07630.38220.97850.072*
C170.06196 (9)0.3661 (3)0.81632 (16)0.0516 (5)
H170.01540.33790.79730.062*
C180.09501 (8)0.3806 (2)0.73614 (14)0.0404 (4)
C19−0.00924 (9)0.3381 (4)0.59165 (18)0.0673 (6)
H19A−0.02110.23070.62360.101*
H19B−0.02510.32860.51340.101*
H19C−0.03050.43980.61460.101*
H3A0.3155 (5)0.467 (3)0.5812 (17)0.062 (6)*
H4A0.1642 (8)0.468 (3)0.6123 (10)0.057 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0354 (2)0.0762 (4)0.0463 (3)0.0095 (2)0.00703 (19)0.0106 (2)
Cl10.0290 (2)0.0731 (3)0.0433 (2)0.00205 (19)0.00649 (17)0.0023 (2)
O10.0294 (6)0.0926 (11)0.0459 (7)0.0051 (6)0.0140 (5)0.0108 (7)
O20.0300 (6)0.0846 (10)0.0443 (7)−0.0058 (6)0.0108 (5)−0.0054 (6)
N10.0276 (6)0.0478 (8)0.0377 (7)−0.0009 (6)0.0107 (5)−0.0008 (6)
N20.0298 (7)0.0543 (9)0.0407 (7)0.0017 (6)0.0090 (6)0.0021 (6)
N30.0279 (7)0.0655 (10)0.0395 (7)0.0010 (7)0.0124 (6)0.0038 (7)
N40.0289 (7)0.0627 (10)0.0338 (7)−0.0018 (6)0.0092 (6)0.0016 (7)
C10.0395 (9)0.0516 (11)0.0540 (10)−0.0062 (8)0.0190 (8)−0.0106 (9)
C20.0363 (9)0.0572 (12)0.0672 (12)−0.0069 (8)0.0213 (8)−0.0031 (10)
C30.0426 (10)0.0635 (12)0.0583 (11)0.0045 (9)0.0280 (9)0.0085 (9)
C40.0472 (10)0.0780 (14)0.0410 (9)0.0036 (10)0.0186 (8)0.0000 (9)
C50.0358 (9)0.0651 (12)0.0402 (9)−0.0021 (8)0.0104 (7)−0.0014 (8)
C60.0302 (8)0.0418 (9)0.0420 (8)0.0022 (7)0.0146 (7)0.0029 (7)
C70.0283 (7)0.0413 (9)0.0364 (8)−0.0011 (7)0.0077 (6)−0.0023 (7)
C80.0277 (7)0.0434 (9)0.0384 (8)−0.0007 (7)0.0108 (6)−0.0019 (7)
C90.0305 (8)0.0438 (9)0.0410 (8)0.0001 (7)0.0109 (7)−0.0012 (7)
C100.0304 (9)0.0670 (13)0.0493 (10)0.0014 (8)0.0092 (7)0.0046 (9)
C110.0306 (8)0.0474 (10)0.0389 (8)−0.0011 (7)0.0112 (7)−0.0011 (7)
C120.0328 (8)0.0422 (9)0.0386 (8)−0.0018 (7)0.0106 (7)−0.0003 (7)
C130.0348 (8)0.0462 (10)0.0382 (8)0.0029 (7)0.0145 (7)0.0031 (7)
C140.0394 (9)0.0748 (14)0.0413 (9)0.0019 (9)0.0104 (8)−0.0019 (9)
C150.0569 (12)0.0878 (16)0.0365 (9)0.0121 (11)0.0137 (9)0.0016 (10)
C160.0612 (12)0.0812 (15)0.0474 (10)0.0082 (11)0.0306 (10)0.0100 (10)
C170.0407 (9)0.0642 (13)0.0559 (11)0.0001 (9)0.0236 (8)0.0053 (9)
C180.0362 (8)0.0450 (10)0.0416 (9)0.0015 (7)0.0140 (7)0.0014 (7)
C190.0344 (10)0.0985 (18)0.0654 (13)−0.0134 (10)0.0090 (9)−0.0023 (12)

Geometric parameters (Å, °)

S1—C121.6612 (17)C4—H40.9300
Cl1—C71.7072 (16)C5—C61.382 (2)
O1—C111.2246 (19)C5—H50.9300
O2—C181.369 (2)C7—C81.390 (2)
O2—C191.430 (2)C8—C91.422 (2)
N1—C71.346 (2)C8—C111.469 (2)
N1—N21.3729 (18)C9—C101.498 (2)
N1—C61.4361 (19)C10—H10A0.9600
N2—C91.325 (2)C10—H10B0.9600
N3—C111.374 (2)C10—H10C0.9600
N3—C121.397 (2)C13—C141.385 (2)
N3—H3A0.890 (9)C13—C181.401 (2)
N4—C121.335 (2)C14—C151.386 (3)
N4—C131.419 (2)C14—H140.9300
N4—H4A0.895 (9)C15—C161.370 (3)
C1—C61.382 (2)C15—H150.9300
C1—C21.392 (2)C16—C171.382 (3)
C1—H10.9300C16—H160.9300
C2—C31.370 (3)C17—C181.385 (2)
C2—H20.9300C17—H170.9300
C3—C41.377 (3)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.383 (2)C19—H19C0.9600
C18—O2—C19117.33 (14)C8—C9—C10129.27 (14)
C7—N1—N2110.99 (12)C9—C10—H10A109.5
C7—N1—C6130.88 (13)C9—C10—H10B109.5
N2—N1—C6117.99 (13)H10A—C10—H10B109.5
C9—N2—N1105.54 (13)C9—C10—H10C109.5
C11—N3—C12130.06 (14)H10A—C10—H10C109.5
C11—N3—H3A117.0 (13)H10B—C10—H10C109.5
C12—N3—H3A112.6 (13)O1—C11—N3121.70 (15)
C12—N4—C13129.34 (14)O1—C11—C8121.50 (15)
C12—N4—H4A114.9 (13)N3—C11—C8116.80 (14)
C13—N4—H4A115.6 (13)N4—C12—N3114.84 (14)
C6—C1—C2118.66 (17)N4—C12—S1128.64 (13)
C6—C1—H1120.7N3—C12—S1116.50 (12)
C2—C1—H1120.7C14—C13—C18119.13 (15)
C3—C2—C1120.60 (17)C14—C13—N4124.74 (15)
C3—C2—H2119.7C18—C13—N4115.98 (14)
C1—C2—H2119.7C13—C14—C15120.26 (17)
C2—C3—C4120.13 (17)C13—C14—H14119.9
C2—C3—H3119.9C15—C14—H14119.9
C4—C3—H3119.9C16—C15—C14120.21 (18)
C3—C4—C5120.31 (18)C16—C15—H15119.9
C3—C4—H4119.8C14—C15—H15119.9
C5—C4—H4119.8C15—C16—C17120.51 (17)
C6—C5—C4119.20 (17)C15—C16—H16119.7
C6—C5—H5120.4C17—C16—H16119.7
C4—C5—H5120.4C16—C17—C18119.80 (17)
C5—C6—C1121.07 (15)C16—C17—H17120.1
C5—C6—N1118.09 (14)C18—C17—H17120.1
C1—C6—N1120.82 (15)O2—C18—C17124.80 (15)
N1—C7—C8108.23 (13)O2—C18—C13115.14 (14)
N1—C7—Cl1121.51 (11)C17—C18—C13120.06 (16)
C8—C7—Cl1130.10 (13)O2—C19—H19A109.5
C7—C8—C9103.59 (13)O2—C19—H19B109.5
C7—C8—C11132.02 (14)H19A—C19—H19B109.5
C9—C8—C11124.40 (14)O2—C19—H19C109.5
N2—C9—C8111.64 (13)H19A—C19—H19C109.5
N2—C9—C10119.07 (15)H19B—C19—H19C109.5
C7—N1—N2—C91.05 (18)C11—C8—C9—C10−2.0 (3)
C6—N1—N2—C9177.15 (14)C12—N3—C11—O1−2.6 (3)
C6—C1—C2—C31.6 (3)C12—N3—C11—C8177.70 (17)
C1—C2—C3—C4−0.4 (3)C7—C8—C11—O1176.78 (18)
C2—C3—C4—C5−1.1 (3)C9—C8—C11—O1−3.6 (3)
C3—C4—C5—C61.3 (3)C7—C8—C11—N3−3.5 (3)
C4—C5—C6—C10.0 (3)C9—C8—C11—N3176.15 (16)
C4—C5—C6—N1178.21 (16)C13—N4—C12—N3−176.04 (17)
C2—C1—C6—C5−1.4 (3)C13—N4—C12—S15.8 (3)
C2—C1—C6—N1−179.60 (16)C11—N3—C12—N44.6 (3)
C7—N1—C6—C5134.17 (19)C11—N3—C12—S1−176.95 (15)
N2—N1—C6—C5−41.0 (2)C12—N4—C13—C1423.6 (3)
C7—N1—C6—C1−47.6 (3)C12—N4—C13—C18−160.93 (18)
N2—N1—C6—C1137.20 (17)C18—C13—C14—C151.4 (3)
N2—N1—C7—C8−1.46 (19)N4—C13—C14—C15176.77 (19)
C6—N1—C7—C8−176.90 (16)C13—C14—C15—C160.3 (3)
N2—N1—C7—Cl1174.41 (12)C14—C15—C16—C17−1.5 (3)
C6—N1—C7—Cl1−1.0 (3)C15—C16—C17—C181.0 (3)
N1—C7—C8—C91.22 (18)C19—O2—C18—C175.6 (3)
Cl1—C7—C8—C9−174.18 (14)C19—O2—C18—C13−173.48 (18)
N1—C7—C8—C11−179.09 (17)C16—C17—C18—O2−178.28 (19)
Cl1—C7—C8—C115.5 (3)C16—C17—C18—C130.7 (3)
N1—N2—C9—C8−0.24 (19)C14—C13—C18—O2177.16 (17)
N1—N2—C9—C10−178.72 (16)N4—C13—C18—O21.4 (2)
C7—C8—C9—N2−0.61 (19)C14—C13—C18—C17−1.9 (3)
C11—C8—C9—N2179.67 (16)N4—C13—C18—C17−177.68 (17)
C7—C8—C9—C10177.68 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.890 (9)2.398 (14)3.1657 (14)144.6 (17)
N4—H4A···O10.895 (9)1.913 (15)2.6589 (19)139.6 (18)
C2—H2···Cg1i0.932.883.613 (2)136
C10—H10B···Cg2ii0.962.983.809 (2)146

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2053).

References

  • Bruker (1997). SMART (Version 5.611) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Du, H.-T., Lu, M., Zhou, W.-Y. & Sun, L.-L. (2007). Acta Cryst. E63, o4287.
  • Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o3695.
  • Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Wang, J., Tian, L. & Liu, S.-Y. (2007). Acta Cryst. E63, o3667.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography