PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o543.
Published online 2008 February 6. doi:  10.1107/S1600536808002821
PMCID: PMC2960807

4-(5-tert-Butyl-1,3-dithian-2-yl)-5-chloro-2-phenyl-1,3-oxazole

Abstract

In the title mol­ecule, C17H20ClNOS2, the phenyl and oxazole rings are nearly coplanar with an average deviation of 0.022 Å from the mean plane (M). The 1,3-dithiane ring adopts a chair conformation and is twisted in such a way that the C—CBu fragment lies in M (deviations are 0.031 and 0.010 Å, respectively, for the two C atoms).

Related literature

For details of the pharmacological properties of the GABA [GABA = γ-aminobutyric acid] receptor, see: Wacher et al. (1992 [triangle]). For the related structural series of the GABA receptor, see: Jeffrey (2003 [triangle]); Naratashi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o543-scheme1.jpg

Experimental

Crystal data

  • C17H20ClNOS2
  • M r = 353.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o543-efi1.jpg
  • a = 7.4543 (15) Å
  • b = 26.222 (5) Å
  • c = 9.4772 (19) Å
  • β = 104.59 (3)°
  • V = 1792.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 296 (2) K
  • 0.34 × 0.31 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.863, T max = 0.924
  • 5683 measured reflections
  • 3135 independent reflections
  • 2788 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.130
  • S = 1.10
  • 3135 reflections
  • 199 parameters
  • 59 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002821/cv2381sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002821/cv2381Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 20572129), the National Basic Research Program of China (grant No. 2003CB114405) and the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science and Technology of China (grant No. 2006BAE01AE01-11).

supplementary crystallographic information

Comment

γ-Aminobutyric acid (GABA) receptor of insect exists in their nerve cell and intramuscular cell, and a combinative site of many insecticide and active compounds (Wacher et al., 1992). A large number of related structural series (e.g., trioxabicyclooctanes, thiazines, arylpyrimidines, oxathianes, and dithianes) was synthesized and assayed on GABA receptor to discover novel insecticides (Jeffrey, 2003). Until now, only synthetic compound Fipronil is broadly used to control certain species of insects that have become resistant to most insecticides (Naratashi et al., 2007). In order to further optimize 1,3-dithiane derivative, the title compound, (I), was synthesized. Herewith we present its crystal structure.

In the title molecule, the phenyl and oxazole rings are nearly coplanar with the average deviation of 0.022 Å from the mean plane (M). The 1,3-dithiane ring adopts a chair conformation being twisted in such a way, that two-atomic fragment C12—C14 actually lie in M with deviations of 0.031 and 0.010 Å, respectively. The crystal structure exhibits no classical hydrogen bonds.

Experimental

Compound (I) was prepared by the 4 h reaction of 0.8 g (3.85 mmol) of 5-chloro-2-phenyloxazole-4-carbaldehyde and 0.8 g (4.88 mmol) of 2-tert-butylpropane-1,3-dithiol in the presence of two drops formic acid used as a catalyst at room temperature with stirring. The resulting mixture was dissolved in chloroform (60 ml), washed with aqueous 10% NaOH (3×20 ml) and H2O (3×20 ml), and then dried with anhydrous sodium sulfate. After concentration, the residue was purified by re-crystallization in a mixed solvent of ethyl acetate and petroleum ether. Single crystals suitable for X-ray data collection were obtained by re-crystallization of the crude product from a mixed solvent ethyl acetate and petroleum ether (v/v, 1/20) as a light yellow crystalline solid (60%), m.p. 453 K.

Refinement

The H atoms were positioned with idealized geometry (C—H 0.93–0.98 Å), and refined using a riding model with Uiso(H)=1.2 or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atomic labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

C17H20ClNOS2F000 = 744
Mr = 353.91Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 7.4543 (15) ÅCell parameters from 13320 reflections
b = 26.222 (5) Åθ = 2.2–27.5º
c = 9.4772 (19) ŵ = 0.45 mm1
β = 104.59 (3)ºT = 296 (2) K
V = 1792.7 (6) Å3Plate, colourless
Z = 40.34 × 0.31 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer3135 independent reflections
Radiation source: rotating anode2788 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 296(2) Kθmax = 25.0º
ω scans at fixed χ = 45°θmin = 2.7º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.863, Tmax = 0.924k = −30→31
5683 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.0651P)2 + 0.55P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3135 reflectionsΔρmax = 0.37 e Å3
199 parametersΔρmin = −0.23 e Å3
59 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.21531 (9)0.68715 (2)0.75838 (9)0.0672 (2)
S20.56576 (9)0.74615 (2)0.89160 (8)0.0656 (2)
Cl10.74022 (11)0.62257 (3)0.61190 (8)0.0840 (3)
O10.7196 (2)0.57469 (6)0.84876 (18)0.0576 (4)
N10.5427 (3)0.62247 (7)0.9549 (2)0.0541 (5)
C10.6072 (4)0.54919 (11)1.1975 (3)0.0732 (7)
H1B0.53530.57761.20420.088*
C20.6441 (5)0.51328 (13)1.3080 (4)0.0923 (10)
H2A0.59660.51741.38910.111*
C30.7516 (6)0.47136 (13)1.2970 (4)0.0978 (11)
H3A0.77890.44761.37230.117*
C40.8183 (5)0.46438 (12)1.1775 (4)0.0869 (9)
H4A0.88810.43551.17030.104*
C50.7828 (4)0.49976 (10)1.0678 (3)0.0685 (7)
H5A0.82930.49500.98650.082*
C60.6776 (3)0.54266 (9)1.0775 (3)0.0557 (6)
C70.6401 (3)0.58120 (9)0.9633 (3)0.0530 (5)
C80.6628 (3)0.61672 (10)0.7651 (3)0.0567 (6)
C90.5551 (3)0.64573 (9)0.8256 (2)0.0523 (5)
C100.4602 (3)0.69455 (9)0.7721 (3)0.0523 (5)
H10A0.47670.70140.67440.063*
C110.1332 (4)0.75009 (9)0.6948 (3)0.0619 (6)
H11A0.15850.75580.60060.074*
H11B−0.00020.75110.68100.074*
C120.2190 (3)0.79347 (9)0.7963 (2)0.0490 (5)
H12A0.21330.78350.89480.059*
C130.4239 (3)0.79820 (9)0.7989 (3)0.0598 (6)
H13A0.47110.83000.84650.072*
H13B0.43540.79990.69930.072*
C140.1074 (4)0.84396 (9)0.7598 (3)0.0573 (6)
C15−0.0878 (4)0.83563 (13)0.7799 (4)0.0839 (9)
H15A−0.15820.86650.75680.126*
H15B−0.07990.82630.87930.126*
H15C−0.14780.80880.71630.126*
C160.0952 (4)0.86200 (12)0.6043 (3)0.0718 (8)
H16A0.02480.89300.58610.108*
H16B0.03530.83630.53650.108*
H16C0.21770.86800.59270.108*
C170.2000 (5)0.88590 (11)0.8662 (4)0.0872 (9)
H17A0.13090.91700.84330.131*
H17B0.32440.89120.85800.131*
H17C0.20260.87580.96410.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0550 (4)0.0493 (4)0.0934 (5)−0.0030 (3)0.0113 (3)−0.0006 (3)
S20.0556 (4)0.0521 (4)0.0797 (5)−0.0014 (3)−0.0003 (3)0.0031 (3)
Cl10.0849 (5)0.1090 (6)0.0667 (4)0.0281 (4)0.0352 (4)0.0140 (4)
O10.0560 (9)0.0558 (10)0.0616 (9)0.0092 (7)0.0160 (8)−0.0001 (8)
N10.0581 (11)0.0478 (11)0.0585 (11)0.0033 (9)0.0184 (9)0.0039 (9)
C10.089 (2)0.0544 (15)0.0798 (18)−0.0037 (14)0.0279 (15)0.0077 (13)
C20.127 (3)0.077 (2)0.078 (2)−0.0156 (19)0.0358 (19)0.0161 (16)
C30.120 (3)0.066 (2)0.095 (2)−0.0088 (19)0.004 (2)0.0311 (18)
C40.089 (2)0.0623 (18)0.103 (2)0.0064 (16)0.0135 (18)0.0195 (17)
C50.0613 (15)0.0566 (15)0.0855 (18)0.0035 (12)0.0146 (13)0.0100 (13)
C60.0536 (13)0.0455 (12)0.0659 (14)−0.0071 (10)0.0112 (11)0.0033 (11)
C70.0498 (12)0.0492 (13)0.0595 (13)−0.0037 (10)0.0128 (10)0.0019 (10)
C80.0568 (14)0.0595 (15)0.0539 (13)0.0065 (11)0.0144 (11)0.0032 (11)
C90.0535 (13)0.0508 (13)0.0535 (12)0.0025 (10)0.0152 (10)0.0020 (10)
C100.0563 (13)0.0508 (13)0.0518 (12)0.0038 (10)0.0174 (10)0.0038 (10)
C110.0567 (14)0.0566 (15)0.0679 (16)0.0077 (11)0.0074 (12)−0.0025 (12)
C120.0570 (13)0.0518 (12)0.0415 (11)0.0058 (10)0.0185 (9)0.0037 (9)
C130.0595 (14)0.0468 (13)0.0719 (16)−0.0006 (11)0.0145 (12)0.0041 (12)
C140.0698 (15)0.0535 (14)0.0535 (13)0.0113 (11)0.0246 (11)0.0070 (10)
C150.0820 (19)0.082 (2)0.103 (2)0.0264 (16)0.0518 (18)0.0230 (18)
C160.0836 (19)0.0727 (18)0.0630 (15)0.0201 (15)0.0259 (14)0.0213 (13)
C170.119 (3)0.0591 (17)0.0819 (19)0.0193 (17)0.0230 (18)−0.0095 (14)

Geometric parameters (Å, °)

S1—C101.808 (3)C9—C101.489 (3)
S1—C111.810 (3)C10—H10A0.9800
S2—C101.812 (2)C11—C121.523 (3)
S2—C131.813 (3)C11—H11A0.9700
Cl1—C81.699 (3)C11—H11B0.9700
O1—C81.362 (3)C12—C131.526 (3)
O1—C71.372 (3)C12—C141.556 (3)
N1—C71.294 (3)C12—H12A0.9800
N1—C91.393 (3)C13—H13A0.9700
C1—C61.378 (4)C13—H13B0.9700
C1—C21.383 (4)C14—C161.528 (3)
C1—H1B0.9300C14—C151.530 (4)
C2—C31.380 (5)C14—C171.534 (4)
C2—H2A0.9300C15—H15A0.9600
C3—C41.359 (5)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.369 (4)C16—H16A0.9600
C4—H4A0.9300C16—H16B0.9600
C5—C61.387 (4)C16—H16C0.9600
C5—H5A0.9300C17—H17A0.9600
C6—C71.455 (3)C17—H17B0.9600
C8—C91.335 (3)C17—H17C0.9600
C10—S1—C11100.18 (12)C12—C11—H11B108.6
C10—S2—C1398.67 (12)S1—C11—H11B108.6
C8—O1—C7103.14 (18)H11A—C11—H11B107.6
C7—N1—C9105.1 (2)C11—C12—C13109.28 (19)
C6—C1—C2119.7 (3)C11—C12—C14112.3 (2)
C6—C1—H1B120.1C13—C12—C14114.3 (2)
C2—C1—H1B120.1C11—C12—H12A106.9
C3—C2—C1119.6 (3)C13—C12—H12A106.9
C3—C2—H2A120.2C14—C12—H12A106.9
C1—C2—H2A120.2C12—C13—S2113.93 (17)
C4—C3—C2120.8 (3)C12—C13—H13A108.8
C4—C3—H3A119.6S2—C13—H13A108.8
C2—C3—H3A119.6C12—C13—H13B108.8
C3—C4—C5120.0 (3)S2—C13—H13B108.8
C3—C4—H4A120.0H13A—C13—H13B107.7
C5—C4—H4A120.0C16—C14—C15109.7 (2)
C4—C5—C6120.2 (3)C16—C14—C17108.7 (2)
C4—C5—H5A119.9C15—C14—C17107.7 (2)
C6—C5—H5A119.9C16—C14—C12112.15 (19)
C1—C6—C5119.6 (3)C15—C14—C12108.8 (2)
C1—C6—C7119.0 (2)C17—C14—C12109.7 (2)
C5—C6—C7121.3 (2)C14—C15—H15A109.5
N1—C7—O1113.7 (2)C14—C15—H15B109.5
N1—C7—C6128.8 (2)H15A—C15—H15B109.5
O1—C7—C6117.5 (2)C14—C15—H15C109.5
C9—C8—O1110.1 (2)H15A—C15—H15C109.5
C9—C8—Cl1133.3 (2)H15B—C15—H15C109.5
O1—C8—Cl1116.62 (18)C14—C16—H16A109.5
C8—C9—N1108.0 (2)C14—C16—H16B109.5
C8—C9—C10129.0 (2)H16A—C16—H16B109.5
N1—C9—C10123.0 (2)C14—C16—H16C109.5
C9—C10—S1108.47 (16)H16A—C16—H16C109.5
C9—C10—S2109.57 (17)H16B—C16—H16C109.5
S1—C10—S2113.36 (13)C14—C17—H17A109.5
C9—C10—H10A108.4C14—C17—H17B109.5
S1—C10—H10A108.4H17A—C17—H17B109.5
S2—C10—H10A108.4C14—C17—H17C109.5
C12—C11—S1114.70 (17)H17A—C17—H17C109.5
C12—C11—H11A108.6H17B—C17—H17C109.5
S1—C11—H11A108.6
C6—C1—C2—C30.3 (5)C7—N1—C9—C8−0.8 (3)
C1—C2—C3—C4−1.5 (6)C7—N1—C9—C10179.2 (2)
C2—C3—C4—C51.6 (6)C8—C9—C10—S1124.2 (3)
C3—C4—C5—C6−0.5 (5)N1—C9—C10—S1−55.9 (3)
C2—C1—C6—C50.8 (4)C8—C9—C10—S2−111.6 (3)
C2—C1—C6—C7−179.0 (3)N1—C9—C10—S268.4 (3)
C4—C5—C6—C1−0.7 (4)C11—S1—C10—C9179.42 (16)
C4—C5—C6—C7179.1 (3)C11—S1—C10—S257.48 (16)
C9—N1—C7—O10.4 (3)C13—S2—C10—C9179.80 (17)
C9—N1—C7—C6178.9 (2)C13—S2—C10—S1−58.88 (15)
C8—O1—C7—N10.2 (3)C10—S1—C11—C12−59.4 (2)
C8—O1—C7—C6−178.5 (2)S1—C11—C12—C1367.9 (2)
C1—C6—C7—N1−1.5 (4)S1—C11—C12—C14−164.19 (16)
C5—C6—C7—N1178.6 (2)C11—C12—C13—S2−70.4 (2)
C1—C6—C7—O1177.0 (2)C14—C12—C13—S2162.84 (16)
C5—C6—C7—O1−2.9 (3)C10—S2—C13—C1263.2 (2)
C7—O1—C8—C9−0.7 (3)C11—C12—C14—C16−59.6 (3)
C7—O1—C8—Cl1178.63 (17)C13—C12—C14—C1665.6 (3)
O1—C8—C9—N11.0 (3)C11—C12—C14—C1562.0 (3)
Cl1—C8—C9—N1−178.2 (2)C13—C12—C14—C15−172.8 (2)
O1—C8—C9—C10−179.1 (2)C11—C12—C14—C17179.6 (2)
Cl1—C8—C9—C101.8 (4)C13—C12—C14—C17−55.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2381).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Jeffrey, R. B. (2003). Arch. Insect Biochem. Physiol.54, 145–156. [PubMed]
  • Naratashi, T., Zhao, X., Ikeda, T., Nagata, K. & Yeh, J. Z. (2007). Hum. Exp. Toxicol.26, 361–366. [PMC free article] [PubMed]
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wacher, V. J., Toia, R. F. & Casida, J. E. (1992). J. Agric. Food. Chem.40, 497–505.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography