PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o547.
Published online 2008 February 6. doi:  10.1107/S1600536808003073
PMCID: PMC2960806

3-Benzyl-5-bromo­pyrazin-2(1H)-one

Abstract

In the title compound, C11H9BrN2O, the mol­ecules are linked into R 2 2(8) dimers by paired N—H(...)O hydrogen bonds and these dimers are further stacked into columns along the c axis by π–π inter­actions between pyrazinone rings [centroid–centroid distance = 3.544 Å; the dihedral angle between the planes of these rings is 7.51 (16)°]. The title compound is a precursor for agents with potential use as pharmaceuticals.

Related literature

For related literature, see: Betancur et al. (1997 [triangle]); Harrison et al. (1994 [triangle]); Rombouts et al. (2001 [triangle], 2003 [triangle]); Snider et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o547-scheme1.jpg

Experimental

Crystal data

  • C11H9BrN2O
  • M r = 265.11
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o547-efi1.jpg
  • a = 12.0408 (16) Å
  • b = 24.273 (3) Å
  • c = 7.0428 (10) Å
  • V = 2058.4 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.97 mm−1
  • T = 100 (2) K
  • 0.28 × 0.16 × 0.14 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.383, T max = 0.576
  • 9901 measured reflections
  • 1825 independent reflections
  • 1242 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.120
  • S = 0.99
  • 1825 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]; Atwood & Barbour, 2003 [triangle]); software used to prepare material for publication: X-SEED;.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003073/kp2155sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003073/kp2155Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Stellenbosch for financial support. JA (Postdoctoral Fellow of the FWO Flanders) thanks the FWO for the fellowship received.

supplementary crystallographic information

Comment

During the early nineties Pfizer (Snider et al., 1991) and Merck (Harrison et al., 1994) optimized a type of compounds (Betancur et al., 1997) that may be of therapeutic use in the treatment of chronic pain, inflammation, depression, emesis, and asthma. (I) can be converted into similar agents with potential biological activity (Rombouts et al., 2001; Rombouts et al., 2003). The molecular structure is given in Fig. 1. The dihedral angle between the planes of the benzene ring (C10—C15) and the pyrazinone ring (C1—N6) is 67.1 (2)°. The r.m.s deviation from the mean plane for the C10—C15 benzene ring is 0.004 Å [maximum deviation = 0.007 (4) Å for atom C13]. For the pyrazinone ring the corresponding value is 0.009 Å [maximum deviation = 0.015 (4) Å for atom C5]. In the crystal packing around a twofold axes hydrogen-bonded dimers are formed through N3—H···O8ihydrogen bond [symmetry code: (i) 3/2 - x, 3/2 - y, z; distance of 2.760 (5) Å (Table 1, Fig. 2). These dimers are stacked into columns by π-π interactions between pyrazinone rings along the c axis [centroid···centroid distances = 3.544 Å; symmetry codes: (ii) 3/2 - x, y, 1/2 + z and (iii) 3/2 - x, y, -1/2 + z] (Fig. 3). There are no direction-specific interactions between stacked columns (Fig. 4).

Experimental

105 mg (0.6 mmol) N-bromosuccinimide was added to an ice-cooled solution (273 K) of 100 mg (0.5 mmol) 3-benzyl-2(1H)-pyrazinone in anhydrous DMF and the mixture was stirred for 2 h at 273 K under inert atmosphere. After extraction with dichloromethane (3x), the organic layer was washed with water, dried over magnesium sulfate and concentrated in vacuo. The crude residue was purified by HPLC (column: Bio-Sil D90–10/250x10mm; Ref 614–0183; eluens: DCM/EtOAc 85:15; flow rate: 3 mL/min) to afford the desired product in 74% yield. IR (KBr, cm-1): 1640.9 (C=O), 1583.4 (C=N); 1H-NMR (300 MHz, CDCl3): 7.5–7.1 (m, 7H, NH + ArH), 4.1 (s, 2H, CH2); 13C-NMR (75 MHz, CDCl3): 136.3 (CO), 129.4–129.3–128.8–128.5–127.8–126.8 (9ArC), 39.3 (CH2); m/z (E.I., %): 264 (M+, 81), 263 (M+ - H, 62), 206 (C8H15OBr, 100), 185 (C4H3ON2Br, 74); HRMS (E.I.): exact mass calcd for C11H9N2OBr: 263.98982; found: 263.99082.

Refinement

H atoms were positioned geometrically (C—H = 0.95 and 0.99 Å; N—H = 0.99 Å) and constrained to ride on their parent atoms; Uiso(H) values were fixed at 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
Fig. 2.
Hydrogen-bonded dimer. Hydrogen bonds are shown as dashed lines. The unlabeled molecule is related to the labeled one by the symmetry operation 3/2 - x, 3/2 - y, z.
Fig. 3.
Capped-stick representation showing the π-π stacking geometry of (I) (dashed orange lines).
Fig. 4.
The packing of (I) viewed down [001].

Crystal data

C11H9BrN2ODx = 1.711 Mg m3
Mr = 265.11Melting point: 428 K
Orthorhombic, PccnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 862 reflections
a = 12.0408 (16) Åθ = 3.0–18.1º
b = 24.273 (3) ŵ = 3.97 mm1
c = 7.0428 (10) ÅT = 100 (2) K
V = 2058.4 (5) Å3Block, pale yellow
Z = 80.28 × 0.16 × 0.14 mm
F000 = 1056

Data collection

Bruker APEX CCD area-detector diffractometer1825 independent reflections
Radiation source: fine-focus sealed tube1242 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.097
T = 100(2) Kθmax = 25.0º
ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997)h = −14→14
Tmin = 0.383, Tmax = 0.576k = −28→28
9901 measured reflectionsl = −8→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0603P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1825 reflectionsΔρmax = 0.71 e Å3
136 parametersΔρmin = −0.55 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7911 (5)0.5858 (2)0.1629 (8)0.0200 (13)
C20.8466 (4)0.6322 (2)0.1986 (9)0.0224 (13)
H20.92530.63350.19080.027*
N30.7866 (3)0.67783 (18)0.2467 (6)0.0203 (11)
H30.82250.70860.27080.024*
C40.6734 (5)0.6778 (2)0.2591 (8)0.0210 (13)
C50.6231 (4)0.6248 (2)0.2201 (7)0.0210 (12)
N60.6796 (4)0.58141 (18)0.1693 (7)0.0224 (11)
Br70.86975 (5)0.52084 (2)0.10346 (9)0.0303 (2)
O80.6208 (3)0.71960 (14)0.3066 (6)0.0260 (9)
C90.4979 (4)0.6209 (2)0.2288 (8)0.0248 (14)
H9A0.46970.64790.32230.030*
H9B0.47680.58360.27340.030*
C100.4439 (4)0.6316 (2)0.0387 (8)0.0207 (13)
C110.4358 (4)0.6843 (2)−0.0314 (8)0.0217 (13)
H110.46760.71410.03740.026*
C120.3819 (4)0.6943 (2)−0.2013 (9)0.0299 (14)
H120.37730.7309−0.24870.036*
C130.3350 (5)0.6521 (3)−0.3016 (10)0.0344 (16)
H130.29660.6594−0.41680.041*
C140.3437 (4)0.5990 (3)−0.2346 (9)0.0314 (16)
H140.31260.5694−0.30520.038*
C150.3968 (4)0.5887 (2)−0.0673 (9)0.0268 (15)
H150.40200.5519−0.02200.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.027 (3)0.017 (3)0.015 (3)0.004 (2)−0.002 (2)−0.002 (2)
C20.021 (3)0.024 (3)0.022 (3)0.003 (3)−0.002 (3)0.001 (3)
N30.016 (2)0.016 (2)0.028 (3)−0.001 (2)−0.003 (2)0.004 (2)
C40.023 (3)0.022 (3)0.018 (3)−0.004 (3)−0.002 (2)0.004 (3)
C50.021 (3)0.031 (3)0.011 (3)0.001 (3)−0.001 (3)0.008 (2)
N60.025 (3)0.021 (3)0.021 (3)−0.004 (2)−0.003 (2)0.004 (2)
Br70.0358 (4)0.0211 (3)0.0341 (4)0.0062 (3)0.0004 (3)−0.0002 (3)
O80.022 (2)0.024 (2)0.033 (2)−0.0024 (18)0.0019 (19)−0.0004 (19)
C90.022 (3)0.031 (3)0.021 (3)−0.003 (3)0.000 (3)0.007 (3)
C100.013 (3)0.026 (3)0.023 (3)−0.001 (2)0.011 (2)−0.003 (3)
C110.013 (3)0.025 (3)0.027 (3)−0.002 (2)0.012 (3)−0.003 (3)
C120.017 (3)0.036 (3)0.037 (4)0.004 (3)0.001 (3)0.009 (3)
C130.016 (3)0.069 (5)0.018 (3)−0.006 (3)−0.002 (3)0.006 (4)
C140.014 (3)0.043 (4)0.037 (4)−0.004 (3)0.006 (3)−0.007 (3)
C150.019 (3)0.024 (3)0.037 (4)0.004 (3)0.009 (3)−0.002 (3)

Geometric parameters (Å, °)

C1—C21.334 (7)C9—H9B0.9900
C1—N61.347 (7)C10—C111.375 (7)
C1—Br71.886 (5)C10—C151.401 (8)
C2—N31.365 (6)C11—C121.383 (8)
C2—H20.9500C11—H110.9500
N3—C41.366 (6)C12—C131.366 (8)
N3—H30.8800C12—H120.9500
C4—O81.243 (6)C13—C141.378 (9)
C4—C51.447 (8)C13—H130.9500
C5—N61.305 (7)C14—C151.364 (9)
C5—C91.512 (7)C14—H140.9500
C9—C101.512 (8)C15—H150.9500
C9—H9A0.9900
C2—C1—N6124.0 (5)C10—C9—H9B109.1
C2—C1—Br7119.7 (4)H9A—C9—H9B107.8
N6—C1—Br7116.2 (4)C11—C10—C15118.2 (6)
C1—C2—N3117.8 (5)C11—C10—C9120.5 (5)
C1—C2—H2121.1C15—C10—C9121.2 (5)
N3—C2—H2121.1C10—C11—C12120.5 (6)
C2—N3—C4122.9 (5)C10—C11—H11119.8
C2—N3—H3118.6C12—C11—H11119.8
C4—N3—H3118.6C13—C12—C11120.7 (6)
O8—C4—N3121.7 (5)C13—C12—H12119.7
O8—C4—C5124.3 (5)C11—C12—H12119.7
N3—C4—C5114.0 (5)C12—C13—C14119.5 (6)
N6—C5—C4123.4 (5)C12—C13—H13120.2
N6—C5—C9118.7 (5)C14—C13—H13120.2
C4—C5—C9117.8 (5)C15—C14—C13120.2 (6)
C5—N6—C1117.7 (5)C15—C14—H14119.9
C5—C9—C10112.5 (4)C13—C14—H14119.9
C5—C9—H9A109.1C14—C15—C10120.9 (6)
C10—C9—H9A109.1C14—C15—H15119.6
C5—C9—H9B109.1C10—C15—H15119.6
N6—C1—C2—N30.8 (9)N6—C5—C9—C10−85.6 (6)
Br7—C1—C2—N3−178.0 (4)C4—C5—C9—C1091.2 (6)
C1—C2—N3—C4−0.2 (8)C5—C9—C10—C11−75.6 (6)
C2—N3—C4—O8178.7 (5)C5—C9—C10—C15107.0 (6)
C2—N3—C4—C51.1 (7)C15—C10—C11—C120.5 (8)
O8—C4—C5—N6179.6 (5)C9—C10—C11—C12−177.0 (5)
N3—C4—C5—N6−2.9 (8)C10—C11—C12—C130.5 (8)
O8—C4—C5—C93.0 (8)C11—C12—C13—C14−1.4 (9)
N3—C4—C5—C9−179.5 (5)C12—C13—C14—C151.3 (9)
C4—C5—N6—C13.6 (8)C13—C14—C15—C10−0.4 (8)
C9—C5—N6—C1−179.8 (5)C11—C10—C15—C14−0.5 (8)
C2—C1—N6—C5−2.5 (9)C9—C10—C15—C14177.0 (5)
Br7—C1—N6—C5176.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O8i0.881.882.760 (5)171

Symmetry codes: (i) −x+3/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2155).

References

  • Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des.3, 3–8.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Betancur, C., Azzi, M. & Rostène, W. (1997). Trends Pharmacol. Sci.18, 372–386. [PubMed]
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Harrison, T., Williams, B. J. & Swain, C. J. (1994). Bioorg. Med. Chem. Lett.4, 2733–2734.
  • Rombouts, F. J. R., De Borggraeve, W. M., Toppet, S. M., Compernolle, F. & Hoornaert, G. J. (2001). Tetrahedron Lett.42, 7397–7399.
  • Rombouts, F. J. R., Van den Bossche, J., Toppet, S. M., Compernolle, F. & Hoornaert, G. J. (2003). Tetrahedron, 59, 4721–4731.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Snider, R. M., Constantine, J. W., Lowe, J. A. III, Longo, K. P., Lebel, W. S., Woody, H. A., Drozda, S. E., Desai, M. C., Vinick, F. J., Spencer, R. W. & Hess, H.-J. (1991). Science, 251, 435–437. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography