PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o612.
Published online 2008 February 22. doi:  10.1107/S1600536808004704
PMCID: PMC2960802

2-(4-Chloro­benzo­yl)-3,6-dimethoxy­naphthalene

Abstract

In the title compound, C19H15ClO3, the inter­planar angle between the naphthalene and benzene ring systems is 62.67 (6)°. The carbonyl group is twisted from both ring planes, with torsion angles of −44.9 (2)° with respect to the naphthalene ring and −26.7 (2)° with respect to the phenyl­ene ring. There is an inter­molecular hydrogen bond between an H atom of one meth­oxy group and the O atom of the second meth­oxy group, forming chains along the ac diagonal.

Related literature

For related literature, see: Ahn et al. (2003 [triangle]); Allen et al. (1998 [triangle]); Chen et al. (2005 [triangle]); Crasto & Stevens (1998 [triangle], 2002 [triangle]); Lorenzetti et al. (2005 [triangle]); Nakaema et al. (2007 [triangle]); Su et al. (2004 [triangle]); Wang & Guen (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o612-scheme1.jpg

Experimental

Crystal data

  • C19H15ClO3
  • M r = 326.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o612-efi1.jpg
  • a = 8.1894 (5) Å
  • b = 20.5251 (13) Å
  • c = 9.9098 (7) Å
  • β = 106.358 (4)°
  • V = 1598.29 (18) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.22 mm−1
  • T = 296 K
  • 0.50 × 0.25 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.458, T max = 0.801
  • 30087 measured reflections
  • 2917 independent reflections
  • 2652 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.100
  • S = 1.07
  • 2917 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004704/fl2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004704/fl2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

Naphthalene derivatives, such as 1,5-disubstituted and 2,6-disubstituted naphthalenes, have been used widely as key building blocks of functional organic compounds such as liquid crystals and electric materials (Su et al., 2004; Ahn et al., 2003; Lorenzetti et al., 2005; Chen et al., 2005). Recently, 1,8-disubstituted naphthalenes have received much attention as unique structured aromatic core compounds, exemplified by dendron cores and supramolecular building blocks (Wang & Guen, 1995; Allen et al., 1998; Crasto & Stevens, 1998, 2002).

In this paper, the structural characteristics of the title compound, which is one of the products of electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, is reported and discussed. The authors have recently reported the crystal structure of the 1,8-diaroylated derivative of 2,7-dimethoxynaphthalene as the product of regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid (Nakaema et al., 2007). As 3-substituted naphthalene compounds are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the title molecule is of interest from both the stereochemical features of its conformation and the thermodynamic aspects of its molecular structure.

An ORTEPIII (Burnett & Johnson, 1996) plot of the title molecule, (I), is displayed in Fig. 1. The 4-chlorobenzoyl group is twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the chlorophenyl ring and the naphthalene ring is 62.67 (6)°. The torsion angle between the carbonyl group and the naphthalene ring is relatively large [C4—C3—C11—O1 = -44.9 (2)°] and that between 4-chlorophenyl group and carbonyl group is rather small [O1—C11—C12—C13 = -26.7 (2)°].

The crystal packing is stabilized mainly by van der Waals interactions. In addition, there is a C—H···O hydrogen bond between a hydrogen of the 2-methoxy group which is situated adjacent to the chlorobenzoyl group, and the ethereal oxygen of the 7-methoxy group in a neighboring molecule that could also contribute the stabilization of the crystal packing (Table 1, Figure 2).

Experimental

The title compound was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol and ethyl acetate.

Refinement

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound, viewed down the c axis. The dashed lines indicate hydrogen bonds.

Crystal data

C19H15ClO3F000 = 680
Mr = 326.76Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point = 424.8–425.2 K
Hall symbol: -P 2ybcCu Kα radiation λ = 1.54187 Å
a = 8.1894 (5) ÅCell parameters from 28831 reflections
b = 20.5251 (13) Åθ = 4.3–68.2º
c = 9.9098 (7) ŵ = 2.22 mm1
β = 106.358 (4)ºT = 296 K
V = 1598.29 (18) Å3Platelet, colorless
Z = 40.50 × 0.25 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer2917 independent reflections
Radiation source: rotating anode2652 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.049
Detector resolution: 10.00 pixels mm-1θmax = 68.2º
T = 296 Kθmin = 4.3º
ω scansh = −9→9
Absorption correction: numerical(NUMABS; Higashi, 1999)k = −24→24
Tmin = 0.458, Tmax = 0.801l = −11→11
30087 measured reflections

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033  w = 1/[σ2(Fo2) + (0.054P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.17 e Å3
2917 reflectionsΔρmin = −0.27 e Å3
211 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.25848 (6)0.44273 (2)−0.48382 (4)0.06829 (17)
O1−0.25367 (15)0.47599 (6)0.18888 (12)0.0662 (3)
O2−0.21482 (13)0.30244 (5)0.06521 (11)0.0560 (3)
O30.44684 (14)0.21975 (6)0.70829 (12)0.0662 (3)
C10.01126 (17)0.27069 (7)0.26978 (14)0.0452 (3)
H10.00240.22720.24210.054*
C2−0.09091 (17)0.31627 (7)0.18563 (14)0.0439 (3)
C3−0.07602 (17)0.38337 (7)0.22433 (14)0.0441 (3)
C40.03617 (18)0.40089 (7)0.35010 (15)0.0478 (3)
H40.04300.44440.37700.057*
C50.14146 (17)0.35510 (7)0.44000 (14)0.0457 (3)
C60.2559 (2)0.37226 (8)0.57153 (17)0.0573 (4)
H60.26420.41550.60060.069*
C70.3536 (2)0.32631 (8)0.65574 (17)0.0602 (4)
H70.42800.33840.74160.072*
C80.34269 (17)0.26071 (8)0.61388 (15)0.0515 (4)
C90.23401 (16)0.24175 (7)0.48760 (15)0.0475 (3)
H90.22840.19820.46060.057*
C100.13031 (16)0.28874 (7)0.39836 (14)0.0427 (3)
C11−0.18305 (18)0.43524 (7)0.13539 (15)0.0474 (3)
C12−0.19823 (17)0.43754 (6)−0.01795 (15)0.0446 (3)
C13−0.34026 (19)0.46603 (8)−0.11003 (16)0.0559 (4)
H13−0.42420.4839−0.07470.067*
C14−0.3593 (2)0.46831 (8)−0.25247 (17)0.0579 (4)
H14−0.45560.4870−0.31320.070*
C15−0.2335 (2)0.44241 (6)−0.30339 (15)0.0498 (3)
C16−0.0880 (2)0.41601 (8)−0.21476 (16)0.0561 (4)
H16−0.00170.4004−0.25020.067*
C17−0.07217 (19)0.41313 (7)−0.07204 (16)0.0527 (4)
H170.02460.3945−0.01160.063*
C18−0.2507 (2)0.23549 (8)0.03027 (17)0.0576 (4)
H18A−0.28030.21400.10610.086*
H18B−0.15190.21510.01490.086*
H18C−0.34390.2324−0.05370.086*
C190.4318 (2)0.15190 (9)0.6806 (2)0.0759 (5)
H19A0.45730.14290.59360.114*
H19B0.31780.13810.67380.114*
H19C0.51020.12880.75560.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1005 (4)0.0595 (3)0.0412 (2)0.0008 (2)0.0139 (2)0.00090 (15)
O10.0758 (7)0.0705 (7)0.0523 (6)0.0258 (6)0.0178 (5)0.0004 (5)
O20.0605 (6)0.0511 (6)0.0437 (5)−0.0009 (5)−0.0059 (5)0.0007 (4)
O30.0597 (6)0.0702 (7)0.0541 (7)0.0035 (5)−0.0078 (5)0.0142 (5)
C10.0489 (7)0.0428 (7)0.0405 (7)−0.0011 (5)0.0070 (6)−0.0004 (5)
C20.0440 (7)0.0491 (7)0.0355 (7)−0.0019 (5)0.0063 (5)0.0004 (5)
C30.0458 (7)0.0467 (7)0.0385 (7)0.0014 (5)0.0099 (6)0.0039 (5)
C40.0523 (8)0.0437 (7)0.0454 (8)−0.0030 (6)0.0105 (6)0.0002 (6)
C50.0450 (7)0.0489 (7)0.0407 (7)−0.0052 (6)0.0079 (6)0.0018 (6)
C60.0609 (9)0.0543 (8)0.0480 (8)−0.0101 (7)0.0014 (7)−0.0023 (7)
C70.0586 (9)0.0664 (10)0.0442 (8)−0.0109 (7)−0.0039 (7)0.0006 (7)
C80.0436 (7)0.0621 (9)0.0439 (8)−0.0021 (6)0.0044 (6)0.0109 (6)
C90.0458 (7)0.0495 (8)0.0442 (8)−0.0006 (6)0.0077 (6)0.0047 (6)
C100.0401 (6)0.0487 (7)0.0381 (7)−0.0029 (5)0.0090 (5)0.0035 (5)
C110.0468 (7)0.0472 (7)0.0467 (8)0.0045 (6)0.0106 (6)0.0016 (6)
C120.0474 (7)0.0405 (7)0.0443 (8)0.0040 (5)0.0101 (6)0.0039 (5)
C130.0526 (8)0.0628 (9)0.0504 (9)0.0167 (7)0.0117 (7)0.0064 (7)
C140.0561 (8)0.0608 (9)0.0497 (9)0.0109 (7)0.0033 (7)0.0088 (7)
C150.0652 (9)0.0395 (7)0.0417 (8)−0.0021 (6)0.0102 (6)0.0031 (5)
C160.0638 (9)0.0562 (8)0.0516 (9)0.0124 (7)0.0218 (7)0.0063 (7)
C170.0501 (7)0.0569 (8)0.0491 (8)0.0138 (6)0.0109 (6)0.0100 (7)
C180.0579 (9)0.0551 (9)0.0509 (9)−0.0030 (7)0.0007 (7)−0.0085 (7)
C190.0724 (11)0.0675 (11)0.0721 (12)0.0099 (9)−0.0050 (9)0.0169 (9)

Geometric parameters (Å, °)

Cl1—C151.7415 (15)C8—C91.372 (2)
O1—C111.2196 (18)C9—C101.4180 (19)
O2—C21.3610 (16)C9—H90.9300
O2—C181.4273 (18)C11—C121.490 (2)
O3—C81.3638 (17)C12—C171.384 (2)
O3—C191.418 (2)C12—C131.3891 (19)
C1—C21.3703 (19)C13—C141.377 (2)
C1—C101.4184 (18)C13—H130.9300
C1—H10.9300C14—C151.376 (2)
C2—C31.425 (2)C14—H140.9300
C3—C41.3718 (19)C15—C161.377 (2)
C3—C111.4980 (18)C16—C171.385 (2)
C4—C51.4098 (19)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C101.419 (2)C18—H18A0.9600
C5—C61.419 (2)C18—H18B0.9600
C6—C71.360 (2)C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—C81.404 (2)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C2—O2—C18117.72 (11)O1—C11—C3120.14 (13)
C8—O3—C19117.97 (13)C12—C11—C3119.31 (12)
C2—C1—C10121.05 (13)C17—C12—C13118.41 (13)
C2—C1—H1119.5C17—C12—C11121.76 (12)
C10—C1—H1119.5C13—C12—C11119.81 (13)
O2—C2—C1124.60 (12)C14—C13—C12121.32 (14)
O2—C2—C3115.07 (11)C14—C13—H13119.3
C1—C2—C3120.30 (12)C12—C13—H13119.3
C4—C3—C2118.85 (12)C15—C14—C13118.88 (14)
C4—C3—C11118.65 (13)C15—C14—H14120.6
C2—C3—C11122.47 (12)C13—C14—H14120.6
C3—C4—C5122.22 (13)C14—C15—C16121.41 (14)
C3—C4—H4118.9C14—C15—Cl1119.44 (12)
C5—C4—H4118.9C16—C15—Cl1119.15 (12)
C4—C5—C10118.58 (12)C15—C16—C17118.92 (14)
C4—C5—C6122.91 (13)C15—C16—H16120.5
C10—C5—C6118.50 (13)C17—C16—H16120.5
C7—C6—C5120.92 (15)C12—C17—C16120.98 (13)
C7—C6—H6119.5C12—C17—H17119.5
C5—C6—H6119.5C16—C17—H17119.5
C6—C7—C8120.41 (14)O2—C18—H18A109.5
C6—C7—H7119.8O2—C18—H18B109.5
C8—C7—H7119.8H18A—C18—H18B109.5
O3—C8—C9124.79 (15)O2—C18—H18C109.5
O3—C8—C7114.39 (13)H18A—C18—H18C109.5
C9—C8—C7120.82 (13)H18B—C18—H18C109.5
C8—C9—C10119.77 (14)O3—C19—H19A109.5
C8—C9—H9120.1O3—C19—H19B109.5
C10—C9—H9120.1H19A—C19—H19B109.5
C9—C10—C1121.47 (13)O3—C19—H19C109.5
C9—C10—C5119.58 (12)H19A—C19—H19C109.5
C1—C10—C5118.93 (12)H19B—C19—H19C109.5
O1—C11—C12120.53 (13)
C18—O2—C2—C15.6 (2)C2—C1—C10—C50.6 (2)
C18—O2—C2—C3−172.22 (13)C4—C5—C10—C9−179.51 (12)
C10—C1—C2—O2−175.97 (12)C6—C5—C10—C9−0.7 (2)
C10—C1—C2—C31.7 (2)C4—C5—C10—C1−1.44 (19)
O2—C2—C3—C4174.76 (12)C6—C5—C10—C1177.42 (13)
C1—C2—C3—C4−3.1 (2)C4—C3—C11—O1−44.9 (2)
O2—C2—C3—C11−2.86 (19)C2—C3—C11—O1132.68 (15)
C1—C2—C3—C11179.26 (13)C4—C3—C11—C12133.39 (14)
C2—C3—C4—C52.3 (2)C2—C3—C11—C12−48.98 (19)
C11—C3—C4—C5179.99 (13)O1—C11—C12—C17151.86 (15)
C3—C4—C5—C100.0 (2)C3—C11—C12—C17−26.5 (2)
C3—C4—C5—C6−178.83 (14)O1—C11—C12—C13−26.7 (2)
C4—C5—C6—C7179.15 (15)C3—C11—C12—C13154.93 (14)
C10—C5—C6—C70.3 (2)C17—C12—C13—C142.1 (2)
C5—C6—C7—C8−0.1 (3)C11—C12—C13—C14−179.24 (14)
C19—O3—C8—C9−5.8 (2)C12—C13—C14—C15−0.8 (3)
C19—O3—C8—C7173.98 (16)C13—C14—C15—C16−1.7 (2)
C6—C7—C8—O3−179.71 (15)C13—C14—C15—Cl1178.11 (13)
C6—C7—C8—C90.1 (2)C14—C15—C16—C172.8 (2)
O3—C8—C9—C10179.38 (13)Cl1—C15—C16—C17−177.04 (12)
C7—C8—C9—C10−0.4 (2)C13—C12—C17—C16−1.0 (2)
C8—C9—C10—C1−177.32 (13)C11—C12—C17—C16−179.62 (14)
C8—C9—C10—C50.7 (2)C15—C16—C17—C12−1.4 (2)
C2—C1—C10—C9178.63 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18C···O3i0.962.513.460 (2)171

Symmetry codes: (i) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2189).

References

  • Ahn, T. H., Park, Y. H., Kim, S. H. & Baik, D. H. (2003). J. Appl. Polym. Sci.90, 3473–3480.
  • Allen, J. M., Horwell, D. C., Lainton, J. A. H., O’Neill, J. A. & Ratcliffe, G. S. (1998). Lett. Pept. Sci., 5, 133–137.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  • Chen, B.-K., Tsay, S.-Y. & Chen, J.-Y. (2005). Polymer, 46, 8624-8633.
  • Crasto, C. J. & Stevens, E. D. (1998). J. Mol. Struct. (Theochem), 454, 51–59.
  • Crasto, C. J. & Stevens, E. D. (2002). J. Mol. Struct. (Theochem), 582, 77–84.
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Lorenzetti, C., Finelli, L., Lotti, N., Vannini, M., Gazzano, M., Berti, C. & Munari, A. (2005). Polymer, 46, 4041-4051.
  • Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Su, C.-Y., Gorforth, A. M., Smith, M. D. & Loye, H.-N. (2004). Chem. Commun. pp. 2158–2159. [PubMed]
  • Wang, Z. Y. & Guen, A. L. (1995). Macromolecules, 28, 3728–3732.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography