PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o623–o624.
Published online 2008 February 22. doi:  10.1107/S1600536808004947
PMCID: PMC2960784

2-Hydroxy­imino-1-phenyl­ethanone thio­semicarbazone monohydrate

Abstract

In the title thio­semicarbazone derivative, C9H10N4OS·H2O, intra­molecular N—H(...)N hydrogen bonds result in the formation of two nearly coplanar five- and six-membered rings, which are also almost coplanar with the adjacent phenyl ring. The oxime group has an E configuration and is involved in inter­molecular O—H(...)O hydrogen bonding as a donor. In the crystal structure, intra­molecular O—H(...)S and N—H(...)N and inter­molecular O—H(...)O and N—H(...)S hydrogen bonds generate edge-fused R 2 2(8) and R 4 1(11) ring motifs. The hydrogen-bonded motifs are linked to each other to form a three-dimensional supra­molecular network.

Related literature

For general backgroud, see: Lukevics et al. (1995 [triangle]); Liberta & West (1992 [triangle]); Hagenbach & Gysin (1952 [triangle]); Jones et al. (1965 [triangle]); Brockman & Thomson (1956 [triangle]); Klayman et al. (1979 [triangle]); Petering & van Giesen (1966 [triangle]); Sevagapandian et al. (2000 [triangle]); Forman (1964 [triangle]); Holan et al. (1984 [triangle]); Balsamo et al. (1990 [triangle]); Marsman et al. (1999 [triangle]); Karle et al. (1996 [triangle]); Etter et al. (1990 [triangle]); Chertanova et al. (1994 [triangle]); Bernstein et al. (1995 [triangle]). For related structures, see: Sarıkavaklı et al. (2007 [triangle]); Özel Güven et al. (2007 [triangle]); Hökelek, Batı et al. (2001 [triangle]); Hökelek, Zülfikaroğlu & Batı (2001 [triangle]); Büyükgüngör et al. (2003 [triangle]); Hökelek et al. (2004a [triangle],b [triangle]); Hökelek et al. (2004 [triangle]). For the synthesis, see: El-Shazly et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o623-scheme1.jpg

Experimental

Crystal data

  • C9H10N4OS·H2O
  • M r = 240.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o623-efi1.jpg
  • a = 28.5615 (3) Å
  • b = 4.6805 (3) Å
  • c = 22.0977 (4) Å
  • β = 127.24 (2)°
  • V = 2351.8 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.940, T max = 0.960
  • 31269 measured reflections
  • 3607 independent reflections
  • 2146 reflections with I > 2σ(I)
  • R int = 0.090

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.154
  • S = 1.04
  • 3607 reflections
  • 193 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004947/xu2403sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004947/xu2403Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

Thiosemicarbazones are derivatives of carbonyl compounds and they have a wide range of biological activities, depending on the parent aldehyde or ketone (Lukevics et al., 1995; Liberta & West, 1992). Some of the thiosemicarbazone derivatives have antitumour (Hagenbach & Gysin, 1952), antiviral (Jones et al., 1965), antileukaemic (Brockman & Thomson, 1956) and antimalarial (Klayman et al., 1979) activities. Thus, some of them have been used as drugs and have the ability to form complexes (Petering & van Giesen, 1966).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms. It is a functional group that has not been extensively explored in crystal engineering. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length 2.8 Å.

Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols, and carboxylic acids (Marsman et al., 1999), in which intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional noncovalent intermolecular interactions (Etter et al., 1990).

The structures of some oxime and dioxime derivatives have been determined in our laboratory, including those of 2,3-dimethylquinoxaline-dimethyl-glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenylamino)- propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu & Batı, 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven et al., 2007] and (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007]. The structure determination of the title compound, (I), a thiosemicarbazone derivative with one 2-hydroxyimino -1-phenyl-ethanone, one thiosemicarbazone moieties and one uncoordinated water molecule, was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime and thiosemicarbazone groups and to compare the geometry of the oxime moiety with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring A (C1—C6) is, of course, planar. The intramolecular N—H···N hydrogen bonds (Table 1) result in the formation of two more planar five- and six-membered rings B (C9/N2—N4/H42) and C (C7/C8/N1—N3/H3A). The rings A, B and C are also nearly coplanar with dihedral angles of A/B = 3.47 (10)°, A/C = 2.84 (10) and B/C = 5.94 (10)°.

Some significant changes in the geometry of the oxime moiety are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moiety has an E configuration [C7—C8—N1—O1 177.1 (2)°; Chertanova et al., 1994]. In this configuration, the oxime groups are involved as donors in O—H···O intermolecular hydrogen bondings (Table 1).

In the crystal structure, intramolecular O—H···S and N—H···N and intermolecular O—H···O and N—H···S hydrogen bonds (Table 1) generate edge-fused R22(8) and R41(11) ring motifs (Fig. 2) (Bernstein et al., 1995). The hydrogen bonded motifs are linked to each other to form a three dimensional network (Fig. 3). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

Experimental

The title compound was prepared according to the literature method (El-Shazly et al., 2005). 2-Isonitrosoacetophenone (149 mg, 1 mmol) was reacted with thiosemicarbazide (91 mg, 1 mmol) in ethanol-water mixture (1:1) by refluxing for 24 h. Then, a few drops of glacial acetic acid were added. The formed precipitate was filtered and recrystallized from ethanol to obtain yellow crystals (yield: 155 mg, 70%).

Refinement

H atoms were located in difference syntheses and refined isotropically [O—H = 0.903 (18)–0.940 (17) Å; Uiso(H) = 0.100 (10)–0.133 (14) Å2, N—H = 0.915 (17)–0.930 (17) Å; Uiso(H) = 0.077 (8)–0.084 (9) Å2 and C—H = 0.92 (3)–0.97 (3) Å; Uiso(H) = 0.071 (8)–0.092 (9) Å2]. The restrains on the O—H (for OH) and N—H (for NH and NH2) bonds and O—H bond lengths and H—O—H bond angle of water molecule were applied.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A part of the crystal structure of (I), showing the formation of R22(8) and R41(11) ring motifs. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10N4OS·H2OF(000) = 1008
Mr = 240.29Dx = 1.357 Mg m3
Monoclinic, C2/cMelting point: 443 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 28.5615 (3) ÅCell parameters from 2893 reflections
b = 4.6805 (3) Åθ = 2.3–30.5°
c = 22.0977 (4) ŵ = 0.27 mm1
β = 127.24 (2)°T = 294 K
V = 2351.8 (6) Å3Prism, yellow
Z = 80.30 × 0.20 × 0.15 mm

Data collection

Rigaku R-AXIS RAPID-S diffractometer3607 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
graphiteRint = 0.090
ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan (Blessing, 1995)h = −40→40
Tmin = 0.940, Tmax = 0.960k = −6→5
31269 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0474P)2 + 0.9027P] where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.14 e Å3
8 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.08587 (3)0.69943 (16)0.58554 (3)0.0693 (2)
O10.24428 (8)0.9359 (4)0.88734 (10)0.0740 (5)
H1A0.2527 (12)1.022 (6)0.8584 (15)0.100 (10)*
O20.22848 (8)0.6577 (4)0.70204 (11)0.0720 (5)
H210.1878 (8)0.692 (7)0.6673 (16)0.133 (14)*
H220.2445 (13)0.817 (5)0.7313 (16)0.113 (12)*
N10.19953 (8)0.7460 (4)0.83853 (10)0.0576 (5)
N20.09978 (8)0.3607 (4)0.75639 (10)0.0577 (5)
N30.10929 (9)0.5206 (5)0.71329 (10)0.0619 (5)
H3A0.1412 (9)0.641 (5)0.7347 (14)0.077 (8)*
N40.02448 (9)0.3422 (5)0.60650 (11)0.0654 (6)
H41−0.0011 (10)0.316 (5)0.5550 (10)0.076 (8)*
H420.0210 (12)0.238 (5)0.6394 (14)0.084 (9)*
C10.07415 (11)0.0295 (6)0.83508 (14)0.0644 (6)
H10.0517 (11)0.012 (5)0.7826 (15)0.074 (8)*
C20.06113 (12)−0.1405 (6)0.87378 (17)0.0721 (7)
H20.0280 (11)−0.257 (5)0.8455 (15)0.071 (8)*
C30.09577 (13)−0.1362 (6)0.95201 (17)0.0724 (7)
H30.0859 (12)−0.245 (6)0.9780 (16)0.083 (9)*
C40.14393 (14)0.0388 (6)0.99041 (16)0.0742 (7)
H40.1666 (12)0.036 (6)1.0426 (16)0.092 (9)*
C50.15737 (13)0.2112 (6)0.95211 (14)0.0639 (6)
H50.1913 (13)0.330 (6)0.9810 (17)0.089 (9)*
C60.12248 (9)0.2111 (5)0.87338 (12)0.0521 (5)
C70.13487 (9)0.3927 (5)0.82959 (11)0.0516 (5)
C80.18351 (10)0.5985 (5)0.87101 (13)0.0580 (6)
H80.2005 (11)0.621 (5)0.9241 (15)0.080 (8)*
C90.07134 (10)0.5057 (5)0.63645 (11)0.0556 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0632 (4)0.0943 (5)0.0452 (3)−0.0096 (3)0.0301 (3)0.0036 (3)
O10.0703 (11)0.0827 (12)0.0573 (10)−0.0268 (9)0.0324 (9)−0.0116 (9)
O20.0630 (11)0.0814 (13)0.0698 (12)0.0040 (10)0.0393 (10)−0.0022 (10)
N10.0518 (10)0.0649 (12)0.0491 (10)−0.0074 (9)0.0269 (9)−0.0074 (8)
N20.0588 (11)0.0704 (12)0.0439 (10)−0.0070 (9)0.0311 (9)−0.0025 (8)
N30.0611 (12)0.0780 (14)0.0419 (9)−0.0147 (10)0.0287 (9)−0.0037 (9)
N40.0628 (12)0.0832 (15)0.0449 (11)−0.0118 (11)0.0299 (10)−0.0060 (10)
C10.0567 (13)0.0777 (17)0.0544 (14)−0.0031 (12)0.0313 (12)0.0037 (12)
C20.0633 (15)0.0771 (18)0.0776 (18)−0.0037 (14)0.0436 (15)0.0078 (14)
C30.0841 (19)0.0761 (18)0.0785 (19)0.0119 (15)0.0603 (17)0.0164 (14)
C40.093 (2)0.0816 (18)0.0567 (15)0.0102 (16)0.0496 (15)0.0081 (14)
C50.0737 (16)0.0693 (15)0.0500 (13)−0.0021 (13)0.0381 (12)−0.0023 (11)
C60.0534 (12)0.0566 (12)0.0491 (11)0.0061 (10)0.0325 (10)0.0012 (9)
C70.0503 (11)0.0596 (13)0.0429 (11)0.0026 (10)0.0272 (9)−0.0009 (9)
C80.0563 (13)0.0668 (14)0.0435 (11)−0.0018 (11)0.0263 (10)−0.0028 (10)
C90.0549 (12)0.0657 (14)0.0438 (11)−0.0008 (11)0.0286 (10)−0.0044 (10)

Geometric parameters (Å, °)

S1—C91.681 (2)C2—H20.93 (3)
O1—H1A0.903 (18)C3—C21.378 (4)
O2—H210.940 (17)C3—C41.368 (4)
O2—H220.907 (18)C3—H30.93 (3)
N1—O11.385 (2)C4—H40.92 (3)
N1—C81.264 (3)C5—C41.381 (4)
N2—N31.362 (3)C5—H50.95 (3)
N2—C71.297 (3)C6—C11.389 (3)
N3—H3A0.923 (17)C6—C51.386 (3)
N4—C91.320 (3)C6—C71.483 (3)
N4—H410.915 (17)C7—C81.469 (3)
N4—H420.930 (17)C8—H80.97 (3)
C1—C21.374 (3)C9—N31.355 (3)
C1—H10.93 (2)
N1—O1—H1A104.6 (19)C3—C4—C5121.2 (3)
H21—O2—H22106 (3)C3—C4—H4116.6 (19)
C8—N1—O1112.88 (19)C5—C4—H4122.2 (19)
C7—N2—N3118.58 (19)C4—C5—C6120.9 (3)
C9—N3—N2120.1 (2)C4—C5—H5118.5 (18)
C9—N3—H3A117.9 (16)C6—C5—H5120.6 (18)
N2—N3—H3A122.0 (17)C1—C6—C7119.6 (2)
C9—N4—H41120.3 (17)C5—C6—C1117.3 (2)
C9—N4—H42117.9 (17)C5—C6—C7123.0 (2)
H41—N4—H42121 (2)N2—C7—C8125.4 (2)
C2—C1—C6121.2 (2)N2—C7—C6116.00 (19)
C2—C1—H1118.9 (16)C8—C7—C6118.60 (18)
C6—C1—H1119.7 (16)N1—C8—C7122.4 (2)
C1—C2—C3120.9 (3)N1—C8—H8122.8 (16)
C1—C2—H2118.0 (16)C7—C8—H8114.7 (16)
C3—C2—H2121.1 (16)N4—C9—N3117.2 (2)
C4—C3—C2118.4 (3)N4—C9—S1124.28 (17)
C4—C3—H3120.7 (18)N3—C9—S1118.46 (18)
C2—C3—H3120.8 (18)
O1—N1—C8—C7177.1 (2)C1—C6—C5—C4−0.6 (4)
C7—N2—N3—C9−175.9 (2)C7—C6—C5—C4179.8 (2)
N3—N2—C7—C82.8 (3)C5—C6—C7—N2177.2 (2)
N3—N2—C7—C6−179.56 (19)C1—C6—C7—N2−2.4 (3)
C6—C1—C2—C3−0.1 (4)C5—C6—C7—C8−5.0 (3)
C4—C3—C2—C1−0.8 (4)C1—C6—C7—C8175.4 (2)
C2—C3—C4—C51.0 (4)N2—C7—C8—N1−7.6 (4)
C6—C5—C4—C3−0.3 (4)C6—C7—C8—N1174.8 (2)
C5—C6—C1—C20.8 (4)S1—C9—N3—N2−178.23 (16)
C7—C6—C1—C2−179.6 (2)N4—C9—N3—N23.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.90 (3)1.83 (3)2.728 (3)174 (3)
O2—H21···S10.94 (3)2.32 (3)3.250 (3)171 (3)
O2—H22···O2i0.91 (3)1.98 (3)2.886 (3)172 (4)
N3—H3A···N10.92 (3)1.91 (2)2.604 (3)130 (2)
N4—H41···S1ii0.92 (2)2.53 (2)3.434 (2)169 (3)
N4—H42···N20.93 (3)2.24 (3)2.643 (3)105 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x, −y+1, −z+1.

Table 2 Table 2. Comparison of the bond lengths and angles (Å, °) in the oxime moieties of the title compound,(I), with the corresponding values in the related compounds (II)–(VII)

Bond/Angle(I)(II)(III)(IV)(V)(VI)(VII)
N1-O11.385 (2)1.403 (2)1.423 (3)1.417 (1)1.429 (4)1.424 (2)1.416 (3)
1.396 (2)1.396 (3)1.397 (3)
N1-C81.264 (3)1.281 (2)1.290 (3)1.290 (1)1.241 (6)1.289 (2)1.282 (3)
1.281 (2)1.282 (3)1.289 (3)
C7-C81.469 (3)1.477 (3)1.489 (3)1.510 (1)1.551 (7)1.513 (2)1.501 (4)
1.473 (3)1.502 (4)
C7-C8-N1122.4 (2)115.2 (2)116.6 (2)114.3 (1)118.3 (5)113.2 (1)114.4 (2)
115.0 (2)115.0 (2)113.4 (2)
C8-N1-O1112.9 (2)112.4 (1)109.4 (2)110.7 (1)112.2 (4)110.6 (1)110.7 (2)
112.2 (1)111.5 (2)111.1 (2)

Notes: (II): 2,3-dimethylquinoxaline-dimethylglyoxime (1/1) (Hökelek, Batı et al., 2001), (III): 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime (Hökelek, Zülfikaroğlu & Batı, 2001), (IV): N-hydroxy-2-oxo-2,N'-diphenylacetamidine (Büyükgüngör et al., 2003), (V): N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine (Hökelek et al., 2004), (VI): N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one (Hökelek et al., 2004a), (VII): N-(3-chloro-4-methylphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine-2,3- dimethylquinoxaline-dimethyl-glyoxime (1/1) (Hökelek et al., 2004b).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2403).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Bocelli, G. & Domiano, P. (1990). Eur. J. Med. Chem.25, 227–233.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Brockman, R. W. & Thomson, J. R. (1956). Cancer Res.16, 167–170. [PubMed]
  • Büyükgüngör, O., Hökelek, T., Taş, M. & Batı, H. (2003). Acta Cryst. E59, o883–o885.
  • Chertanova, L., Pascard, C. & Sheremetev, A. (1994). Acta Cryst. B50, 708–716.
  • El-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S. & El-Asmy, A. A. (2005). Spectrochim. Acta, A61, 243–252.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Forman, S. E. (1964). J. Org. Chem.29, 3323–3327.
  • Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184–185. [PubMed]
  • Hökelek, T., Batı, H., Bekdemir, Y. & Kütük, H. (2001). Acta Cryst. E57, o663–o665.
  • Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004a). Acta Cryst. E60, o109–o111.
  • Hökelek, T., Büyükgüngör, O., Taş, M. & Batı, H. (2004b). Acta Cryst. E60, o406–o408.
  • Hökelek, T., Taş, M. & Batı, H. (2004). Cryst. Res. Technol.39, 363–367.
  • Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249.
  • Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci.15, 361–368.
  • Jones, D. H., Slack, R., Squires, S. & Woolridge, K. R. H. (1965). J. Med. Chem.8, 676–680.
  • Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc.118, 7128–7133.
  • Klayman, D. L., Bartoserich, J. F., Griffin, T. S., Manson, C. J. & Scovill, J. P. (1979). J. Med. Chem.22, 885–893.
  • Liberta, A. E. & West, D. X. (1992). Biometals, 5, 121–125. [PubMed]
  • Lukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem.30, 983–986.
  • Marsman, A. W., Leussing, E. D., Zwikker, J. W. & Jenneskens, L. W. (1999). Chem. Mater.11, 1484–1491.
  • Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464.
  • Petering, H. G. & van Giesen, G. J. (1966). The Biochemistry of Copper, pp. 197–208. New York: Harriman.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sarıkavaklı, N., Şahin, E. & Hökelek, T. (2007). Acta Cryst. E63, o3601.
  • Sevagapandian, S., Rjagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem.25, 388–393.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography