PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m471.
Published online 2008 February 13. doi:  10.1107/S1600536808004066
PMCID: PMC2960781

Dichloridobis[(S)-2-hydroxy­propion­amide-κ2 O,O′]manganese(II)

Abstract

In the title compound, [MnCl2(C3H7NO2)2], the MnII ion is bound to two Cl atoms and to four O atoms from two lacta­mide mol­ecules which act as bidentate ligands, giving rise to a highly distorted octa­hedral coordination geometry. The axial positions are occupied by one Cl atom and one O (hydr­oxy) atom. The values of the cis bond angles at the Mn atom are in the range 72.33 (5)–100.17 (6)°. Of the two possible coordination modes (N,O- or O,O-bidentate) in metal complexes with lacta­mide or its derivatives described in the literature, the title compound exhibits the O,O-bidentate mode. In the crystal structure, monomeric manganese(II) complexes are linked by several N—H(...)Cl, O—H(...)Cl and O—H(...)O hydrogen bonds, generating a three-dimensional network.

Related literature

For related literature, see: Bekaert et al. (2005 [triangle], 2007 [triangle]); Chen et al. (2006 [triangle]); Girma et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m471-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C3H7NO2)2]
  • M r = 304.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m471-efi6.jpg
  • a = 6.312 (2) Å
  • b = 11.718 (3) Å
  • c = 8.268 (2) Å
  • β = 99.47 (1)°
  • V = 603.2 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 293 (2) K
  • 0.18 × 0.16 × 0.12 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3659 measured reflections
  • 1836 independent reflections
  • 1803 reflections with I > 2σ(I)
  • R int = 0.030
  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.061
  • S = 1.11
  • 1836 reflections
  • 161 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004066/im2054sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004066/im2054Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Metal-containing proteins have been studied in relation to severe diseases. Alzheimer's and mad cow diseases imply metal-protein interactions and metalloproteases are implied in cancer dispersion and angiotensin converting enzyme (ACE) in blood pressure control. For these reasons, amide-metal complexes have attracted much interest (lactamide = 2-hydroxypropionamide). Recently, we have been engaged in the synthesis and structural characterization of the cationic complexes [Zn(lactamide)3]2+ (Bekaert et al., 2005) and [B(lactamide)2]+ (Bekaert et al., 2007). Moreover, manganese is known to participate in a variety of biological reactions. We therefore studied and now report a new dichloromanganese(II) complex with lactamide ligands. Compound (1) (Fig. 1) contains one monomeric octahedral manganese complex, [Mn(C3H7NO2)Cl2]. Manganese is surrounded by two bidentate lactamide ligands each coordinating via the carbonyl O atom O1 (or O6) and the hydroxy atom O2 (or O7) and two Cl ligands. The complex exhibits a highly distorted octahedral geometry around the MnII ion with the apical positions occupied by O2 and Cl2 aoms (O2—Mn—Cl2: 167.63 (4) °). The Mn atom lies 0.270 (1) Å out of the basal plane (Cl1/O1/O2/O6). The degree of deviation from an ideal octahedron is appreciable, with the cis angles of the octahedron ranging from 72.33 (5) to 100.17 (6) °. The two equatorial Mn—O bond lengths for oxygen amide atoms are 2.196 (1) and 2.185 (2) Å for O1 and O6, respectively, being close to those reported for [Mn(O-acrylamide)4Cl2] with a similar coordination of MnII [2.186 (1) Å] (Girma et al., 2005). Among the Mn—O (hydroxy) distances the equatorial Mn—O7 [2.174 (2) Å], is close to precedent values but very different from the axial Mn—O2 bond length [2.247 (2) Å]. The Mn—Cl bond distances [2.4535 (7) and 2.4786 (7) Å] are in good agreement with those found in similar octahedral MnII complexes like e.g. in [chloridobis(1,10- phenanthroline)(trichloroacetato)manganese(II)] [2.4374 (2) Å] (Chen et al., 2006). Among the two possible coordination modes (N,O or O,O) in metal complexes with lactamide or its derivatives described in the literature, the title compound presents the O,O mode as in the before cited [Zn(lactamide)3]2+ and [B(lactamide)2]+ complexes. The packing is charaterized by numerous interactions that can be considered as hydrogen bonds since they correspond to H–A contacts significantly shorter than the sum of the van der Waals radii (Table 1). In particular, [Mn(lactamide)2Cl2] complexes are connected by N—H···Cl, N—H···O and O—H···O hydrogen bonds, generating a three dimensional network (Figures 1 and 2).

Experimental

Enantiomerically pure (S)-lactamide ((S)-2-hydroxypropionamide, 2.22 g, 25 mmol) is dissolved in 20 ml of hot ethanoic acid and manganese(II) dichloride (1.26 g, 10 mmol) is added to this solution. The solution is kept at room temperature for 72 h. Pink crystals of the title compound slowly appear in the solution, whereupon crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms except those bonded to methyl groups were located in a difference map and refined and a common displacement parameter. For methyl groups H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96Å with Uiso(H) = 1.5 times Ueq(C).

Figures

Fig. 1.
Molecular view of the complex showing the atomic numbering and some N—H···Cl, O—H···Cl and O—H···O hydrogen bonds as dotted lines. Displacement ellipsoids ...
Fig. 2.
Stereoscopic view of molecular the stacking including hydrogen bonds.

Crystal data

[MnCl2(C3H7NO2)2]F000 = 310
Mr = 304.03Dx = 1.674 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.312 (2) Åθ = 3.0–8.9º
b = 11.718 (3) ŵ = 1.53 mm1
c = 8.268 (2) ÅT = 293 (2) K
β = 99.47 (1)ºParallelepiped, pink
V = 603.2 (3) Å30.18 × 0.16 × 0.12 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.030
Radiation source: fine-focus sealed tubeθmax = 30.0º
Monochromator: graphiteθmin = 2.5º
T = 293(2) Kh = −8→8
ω–2θ scansk = 0→16
Absorption correction: nonel = −11→11
3659 measured reflections3 standard reflections
1836 independent reflections every 60 min
1803 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061  w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1836 reflectionsΔρmax = 0.35 e Å3
161 parametersΔρmin = −0.51 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.28185 (4)0.57573 (2)0.28850 (3)0.02305 (8)
Cl10.43848 (9)0.40435 (4)0.43841 (7)0.03790 (12)
Cl20.13344 (8)0.49119 (5)0.02244 (5)0.03331 (11)
O1−0.0161 (2)0.56907 (16)0.39299 (14)0.0286 (3)
N1−0.1127 (4)0.5206 (3)0.6322 (2)0.0513 (7)
H1A−0.228 (6)0.480 (3)0.576 (4)0.041 (3)*
H1B−0.079 (6)0.526 (3)0.729 (4)0.041 (3)*
C10.0131 (3)0.5736 (2)0.54632 (19)0.0287 (3)
O20.3440 (2)0.66403 (14)0.53298 (18)0.0333 (3)
H20.406 (6)0.730 (3)0.563 (4)0.041 (3)*
C20.1925 (3)0.6459 (2)0.6381 (2)0.0310 (4)
H200.253 (5)0.609 (3)0.728 (4)0.041 (3)*
C30.1005 (7)0.7558 (4)0.6897 (6)0.0699 (11)
H3A0.21410.80230.74690.105*
H3B−0.00160.73960.76070.105*
H3C0.03040.79580.59440.105*
O60.2428 (2)0.74635 (14)0.1810 (2)0.0332 (3)
O70.5940 (2)0.63077 (16)0.2395 (2)0.0414 (4)
H70.726 (6)0.617 (3)0.278 (4)0.041 (3)*
N60.3807 (4)0.89164 (17)0.0554 (3)0.0392 (4)
H6A0.483 (6)0.919 (4)0.025 (4)0.041 (3)*
H6B0.255 (6)0.924 (4)0.036 (4)0.041 (3)*
C60.3966 (3)0.79133 (17)0.1305 (2)0.0277 (3)
C70.6136 (3)0.73241 (18)0.1480 (2)0.0297 (4)
H700.715 (6)0.786 (4)0.211 (4)0.041 (3)*
C80.6730 (4)0.7018 (2)−0.0168 (3)0.0399 (5)
H8A0.81050.6647−0.00060.060*
H8B0.67950.7700−0.08020.060*
H8C0.56650.6513−0.07410.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.02205 (12)0.02285 (12)0.02441 (12)0.00065 (10)0.00426 (8)0.00154 (9)
Cl10.0368 (2)0.0242 (2)0.0493 (3)0.00502 (18)−0.0032 (2)0.00568 (18)
Cl20.0347 (2)0.0378 (2)0.02582 (17)0.00258 (19)0.00027 (15)−0.00370 (18)
O10.0222 (5)0.0419 (7)0.0209 (5)−0.0006 (6)0.0014 (4)0.0020 (6)
N10.0488 (11)0.0796 (18)0.0257 (7)−0.0334 (12)0.0060 (7)0.0035 (9)
C10.0253 (7)0.0362 (9)0.0238 (7)−0.0043 (9)0.0018 (6)0.0018 (8)
O20.0348 (7)0.0298 (7)0.0379 (7)−0.0101 (6)0.0134 (6)−0.0101 (6)
C20.0313 (8)0.0385 (9)0.0225 (6)−0.0089 (8)0.0026 (6)−0.0010 (7)
C30.070 (2)0.0620 (19)0.089 (2)−0.0148 (18)0.046 (2)−0.0384 (19)
O60.0284 (6)0.0280 (6)0.0442 (7)0.0033 (6)0.0094 (6)0.0096 (6)
O70.0202 (6)0.0455 (9)0.0578 (9)0.0047 (6)0.0043 (6)0.0309 (8)
N60.0410 (10)0.0281 (8)0.0509 (10)0.0063 (8)0.0147 (8)0.0128 (8)
C60.0295 (8)0.0233 (8)0.0299 (7)0.0013 (6)0.0041 (7)0.0022 (6)
C70.0240 (7)0.0279 (9)0.0363 (8)−0.0020 (7)0.0020 (7)0.0081 (7)
C80.0421 (11)0.0343 (10)0.0466 (11)0.0121 (9)0.0172 (9)0.0065 (9)

Geometric parameters (Å, °)

Mn1—O72.1739 (16)C3—H3A0.9600
Mn1—O62.1853 (17)C3—H3B0.9600
Mn1—O12.1964 (14)C3—H3C0.9600
Mn1—O22.2471 (15)O6—C61.236 (3)
Mn1—Cl22.4535 (7)O7—C71.427 (2)
Mn1—Cl12.4786 (7)O7—H70.86 (4)
O1—C11.252 (2)N6—C61.326 (3)
N1—C11.307 (3)N6—H6A0.80 (4)
N1—H1A0.92 (4)N6—H6B0.87 (4)
N1—H1B0.80 (3)C6—C71.519 (3)
C1—C21.515 (3)C7—C81.514 (3)
O2—C21.410 (2)C7—H700.98 (4)
O2—H20.89 (4)C8—H8A0.9600
C2—C31.503 (4)C8—H8B0.9600
C2—H200.89 (3)C8—H8C0.9600
O7—Mn1—O672.40 (6)C1—C2—H20109 (2)
O7—Mn1—O1160.90 (7)C2—C3—H3A109.5
O6—Mn1—O198.39 (6)C2—C3—H3B109.5
O7—Mn1—O290.10 (7)H3A—C3—H3B109.5
O6—Mn1—O286.32 (7)C2—C3—H3C109.5
O1—Mn1—O272.33 (5)H3A—C3—H3C109.5
O7—Mn1—Cl2100.17 (6)H3B—C3—H3C109.5
O6—Mn1—Cl290.23 (5)C6—O6—Mn1119.04 (14)
O1—Mn1—Cl296.49 (4)C7—O7—Mn1120.43 (12)
O2—Mn1—Cl2167.63 (4)C7—O7—H7101 (2)
O7—Mn1—Cl191.97 (5)Mn1—O7—H7137 (2)
O6—Mn1—Cl1162.47 (5)C6—N6—H6A120 (3)
O1—Mn1—Cl194.10 (5)C6—N6—H6B118 (3)
O2—Mn1—Cl185.82 (5)H6A—N6—H6B122 (4)
Cl2—Mn1—Cl1100.56 (3)O6—C6—N6122.2 (2)
C1—O1—Mn1113.83 (11)O6—C6—C7121.32 (18)
C1—N1—H1A118 (2)N6—C6—C7116.43 (19)
C1—N1—H1B115 (3)O7—C7—C8109.57 (18)
H1A—N1—H1B127 (3)O7—C7—C6105.93 (15)
O1—C1—N1121.9 (2)C8—C7—C6112.02 (17)
O1—C1—C2120.30 (17)O7—C7—H70111 (2)
N1—C1—C2117.71 (16)C8—C7—H70113.3 (18)
C2—O2—Mn1116.74 (12)C6—C7—H70105 (2)
C2—O2—H2106 (2)C7—C8—H8A109.5
Mn1—O2—H2131 (2)C7—C8—H8B109.5
O2—C2—C3112.3 (2)H8A—C8—H8B109.5
O2—C2—C1107.58 (15)C7—C8—H8C109.5
C3—C2—C1109.2 (2)H8A—C8—H8C109.5
O2—C2—H20110 (2)H8B—C8—H8C109.5
C3—C2—H20108 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (4)2.40 (4)3.310 (2)170 (3)
N1—H1B···Cl2ii0.80 (3)2.60 (4)3.360 (2)159 (3)
O2—H2···Cl1iii0.89 (4)2.26 (4)3.1250 (17)164 (3)
O7—H7···O1iv0.86 (4)1.83 (4)2.676 (2)167 (3)
N6—H6A···Cl2v0.80 (4)2.65 (4)3.439 (2)168 (3)
N6—H6B···Cl2vi0.87 (4)2.54 (4)3.409 (3)172 (4)

Symmetry codes: (i) x−1, y, z; (ii) x, y, z+1; (iii) −x+1, y+1/2, −z+1; (iv) x+1, y, z; (v) −x+1, y+1/2, −z; (vi) −x, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2054).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2005). Acta Cryst. C61, m76–m77. [PubMed]
  • Bekaert, A., Lemoine, P., Brion, J. D. & Viossat, B. (2007). Acta Cryst. E63, o3187–o3189.
  • Chen, L., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m1743–m1745.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.1. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Girma, K. B., Lorentz, V., Blaurock, S. & Edelmann, F. T. (2005). Z. Anorg. Allg. Chem.631, 2763–2769.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography