PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o642–o643.
Published online 2008 February 29. doi:  10.1107/S1600536808005205
PMCID: PMC2960777

(E)-2-[4-(Dimethyl­amino)styr­yl]-1-methyl­quinolinium 4-methoxy­benzene­sulfonate monohydrate1

Abstract

In the title compound, C20H21N2 +·C7H7O4S·H2O, the cation is nearly planar and exists in the E configuration. The cations and anions form individual chains along the b axis and are inter­connected by weak C—H(...)O inter­actions. The 4-methoxy­benzensulfonate anions are linked to water mol­ecules through O—H(...)O hydrogen bonds, forming a three-dimensional network. The crystal structure is further stabilized by a C—H(...)π inter­action involving the methoxy­phenyl ring. The sulfonate anion is also involved in a weak intra­molecular C—H(...)O inter­action which generates an S(5) ring motif.

Related literature

For bond lengths and angles, see: Allen (2002 [triangle]); Allen et al. (1987 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For background to NLO materials research, see: Chia et al., (1995 [triangle]); Otero et al., (2002 [triangle]). For related structures, see for example: Chantrapromma et al. (2006 [triangle], 2007 [triangle], 2007a [triangle],b [triangle]); Jindawong et al. (2005 [triangle]); Dittrich et al. (2003 [triangle]); Nogi et al. (2000 [triangle]); Sato et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o642-scheme1.jpg

Experimental

Crystal data

  • C20H21N2 +·C7H7O4S·H2O
  • M r = 494.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o642-efi1.jpg
  • a = 14.6064 (5) Å
  • b = 10.4253 (4) Å
  • c = 19.5025 (6) Å
  • β = 126.737 (2)°
  • V = 2379.94 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 100.0 (1) K
  • 0.58 × 0.27 × 0.19 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.904, T max = 0.967
  • 33983 measured reflections
  • 6953 independent reflections
  • 5445 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.139
  • S = 1.06
  • 6953 reflections
  • 350 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005205/sj2466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005205/sj2466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Prince of Songkla University for financial support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advance­ment Grant Allocation (SAGA) No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

A lot of research have been done to search for second-order nonlinear optic (NLO) materials. Organic crystals with the required conjugated π electrons are attractive candidates because of their large NLO coefficients (Chia et al., 1995; Dittrich et al., 2003; Otero et al., 2002; Nogi et al., 2000; Sato et al., 1999). In our research on this kind of materials, we have previously synthesized and crystallized several organic ionic salts of quinolinium derivatives to study their non-linear optical properties (Chantrapromma et al., 2006; 2007a,b; 2007; Jindawong et al., 2005). Previous studies (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999) have shown that the 1-methyl-4-(2-(4-(dimethylamino)phenyl)ethynyl)pyridinium p-toluenesulfonate (DAST) and its analogues exhibit second-order non-linear optical properties. Based on these previous studies, we have synthesized the title compound which was designed to increase the π-conjugation in the system with the replacement of the cationic 4-hydroxy-3-methoxyphenyl ring that is present in 2-[(E)-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzenesulfonate (Chantrapromma et al., 2007a) by the 4-dimethylaminophenyl ring. The synthesis and crystal structure of the title compound, (I), Fig 1, are reported in this study. Unfortunately this crystal does not have second-order NLO properties because it crystallized out in a centrosymmetric space group.

The asymmetric unit of the title compound consists of the C20H21N2+ cation, C7H7O4S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C10?C11 double bond [1.350 (2) Å] and is nearly planar as indicated by the dihedral angle between the quinolinium and the dimethylaminophenyl rings being 3.41 (7)° and the torsion angles C8–C9–C10–C11 = -8.7 (2)° and C10–C11–C12–C17 = 3.2 (3)°. The relative arrangement of cation and anion is shown by the angles between the mean plane of the methoxyphenyl ring and those of the quinolinium and dimethylaminophenyl systems which are 81.29 (7)° and 78.29 (8)°, respectively.

The atom O4 of the sulfonate contributes to a weak intramolecular C—H···O interaction (Fig. 1 and Table 1) forming an S(5) ring motif (Bernstein et al., 1995). The bond lengths and angles are normal (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma et al., 2006; 2007a; 2007b; 2007c).

In the crystal packing, the O2 and O4 atoms of 4-methoxybenzenesulfonate anion are involved in the O—H···O hydrogen bonds whereas O3 and O4 atoms are involved in weak C—H···O interactions (Table 1). The cations and anions form individual chains along the b axis and are interconnected by weak C—H···O interactions. The 4-methoxybenzensulfonate anions are linked to water molecules through O—H···O hydrogen bonds forming a three dimensional network (Fig. 2). The crystal structure is further stabilized by a C16—H16A···π interaction to the methoxyphenyl ring [C21–C26]: C16—H16A=0.93; H16A···Cgi=2.8096; C16—Cg1i=3.6513 (19) Å; C16—H16A···Cg1i= 151°. [Cg1i is the centroid of the C21–C26 methoxyphenyl ring (symmetry code: (i): 1 - x, 1 - y, 1 - z).]

Experimental

2-(4-dimethylaminostyryl)-1-methylquinolinium iodide (compound A) was synthesized by mixing a solution (1:1:1 molar ratio) of 1,2-dimethylquinolinium iodide (2.00 g, 7.01 mmol), dimethylaminobenzaldehyde (1.05 g, 7.01 mmol) and piperidine (0.70 g, 7.01 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 6 h under a nitrogen atmosphere. The resultant solid was filtered off, washed with methanol and recrystallized from methanol to give green crystals of compound A. Silver(I) 4-methoxybenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma et al., 2007a). The title compound was synthesized by mixing compound A (0.2 g, 0.48 mmol) in hot methanol (50 ml) and compound B (0.14 g, 0.48 mmol) in hot methanol (20 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for ca 30 min, the precipitate was removed and the resulting solution was evaporated yielding a brown solid. Brown block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol/ethanol solvent (3:1 v/v) by slow evaporation of the solvent at room temperature after a few weeks. (Mp. 545–547 K).

Refinement

All H atoms were placed in calculated positions with d(O—H) = 0.85 Å, Uiso=1.2Ueq(O), d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.88 Å from C9 and the deepest hole is located at 0.69 Å from S1.

Figures

Fig. 1.
The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The weak intramolecular C—H···O interaction is drawn as a dashed line.
Fig. 2.
The crystal packing of (I) viewed along the b axis. The O—H···O and weak C—H···O interactions are drawn as dashed lines.

Crystal data

C20H21N2+·C7H7O4S·H2OF000 = 1048
Mr = 494.60Dx = 1.380 Mg m3
Monoclinic, P21/cMelting point = 545–547 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 14.6064 (5) ÅCell parameters from 6593 reflections
b = 10.4253 (4) Åθ = 2.1–30.0º
c = 19.5025 (6) ŵ = 0.18 mm1
β = 126.737 (2)ºT = 100.0 (1) K
V = 2379.94 (16) Å3Block, brown
Z = 40.58 × 0.27 × 0.19 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer6953 independent reflections
Radiation source: fine-focus sealed tube5445 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 2.1º
ω scansh = −20→19
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −14→14
Tmin = 0.904, Tmax = 0.967l = −24→27
33983 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.139  w = 1/[σ2(Fo2) + (0.0641P)2 + 1.1852P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6953 reflectionsΔρmax = 0.75 e Å3
350 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.61826 (3)0.05907 (4)0.76956 (2)0.02112 (11)
O10.95438 (10)−0.35916 (12)0.95862 (7)0.0250 (3)
O20.53003 (10)0.00579 (13)0.68519 (7)0.0275 (3)
O30.57692 (12)0.08820 (15)0.81913 (8)0.0360 (3)
O40.67900 (11)0.16597 (13)0.76497 (8)0.0301 (3)
O1W0.66931 (11)0.09083 (15)0.33524 (10)0.0429 (4)
H1W0.60580.06600.32240.058 (8)*
H2W0.66330.16820.31870.050 (7)*
N10.56771 (11)0.67419 (14)0.49475 (8)0.0215 (3)
N20.05342 (12)1.30700 (15)0.29537 (8)0.0235 (3)
C10.64527 (13)0.57400 (17)0.54367 (9)0.0217 (3)
C20.70847 (15)0.51470 (19)0.52077 (11)0.0277 (4)
H2A0.70210.54170.47260.038 (6)*
C30.77995 (16)0.4162 (2)0.56969 (11)0.0322 (4)
H3A0.82270.37720.55450.055 (7)*
C40.79097 (16)0.37240 (19)0.64227 (11)0.0304 (4)
H4A0.83930.30400.67370.043 (6)*
C50.73095 (14)0.42956 (18)0.66701 (10)0.0268 (4)
H5A0.73840.40090.71530.024 (5)*
C60.65650 (13)0.53407 (17)0.61789 (10)0.0229 (3)
C70.59337 (14)0.59648 (18)0.64128 (10)0.0237 (3)
H7A0.59890.56870.68890.026 (5)*
C80.52447 (14)0.69699 (18)0.59453 (10)0.0241 (3)
H8A0.48570.73960.61200.024 (5)*
C90.51057 (13)0.73831 (17)0.51874 (9)0.0216 (3)
C100.43701 (13)0.84531 (17)0.46835 (10)0.0220 (3)
H10A0.43840.87630.42430.032 (6)*
C110.36646 (13)0.90197 (17)0.48240 (9)0.0211 (3)
H11A0.36850.87100.52800.033 (6)*
C120.28800 (13)1.00599 (16)0.43337 (9)0.0197 (3)
C130.22320 (13)1.05721 (17)0.45820 (9)0.0218 (3)
H13A0.23241.02390.50620.039 (6)*
C140.14611 (13)1.15578 (17)0.41354 (9)0.0215 (3)
H14A0.10481.18760.43210.029 (5)*
C150.12911 (12)1.20908 (16)0.33990 (9)0.0188 (3)
C160.19398 (13)1.15699 (17)0.31446 (9)0.0202 (3)
H16A0.18451.18930.26610.025 (5)*
C170.27101 (13)1.05893 (17)0.36003 (9)0.0206 (3)
H17A0.31281.02700.34190.023 (5)*
C18−0.01161 (15)1.3601 (2)0.32301 (11)0.0292 (4)
H18A0.03961.38440.38210.029 (5)*
H18B−0.06421.29680.31620.034 (6)*
H18C−0.05321.43410.28900.054 (8)*
C190.03078 (15)1.35334 (19)0.21618 (10)0.0260 (4)
H19A0.10001.38660.22770.036 (6)*
H19B−0.02571.42000.19260.043 (7)*
H19C0.00311.28390.17600.028 (5)*
C200.54745 (16)0.7057 (2)0.41323 (11)0.0288 (4)
H20A0.47130.73840.37380.051 (7)*
H20B0.55640.62990.38980.044 (7)*
H20C0.60140.76950.42280.048 (7)*
C210.72090 (13)−0.06494 (16)0.82541 (9)0.0190 (3)
C220.68657 (13)−0.19286 (17)0.81620 (9)0.0210 (3)
H22A0.6094−0.21360.77930.024 (5)*
C230.76655 (14)−0.28880 (17)0.86144 (9)0.0218 (3)
H23A0.7432−0.37370.85530.032 (6)*
C240.88269 (13)−0.25763 (16)0.91662 (9)0.0198 (3)
C250.91782 (13)−0.13092 (16)0.92572 (9)0.0209 (3)
H25A0.9950−0.11020.96230.030 (5)*
C260.83634 (13)−0.03516 (17)0.87967 (9)0.0207 (3)
H26A0.85960.04970.88530.021 (5)*
C271.07377 (14)−0.33401 (19)1.02041 (11)0.0272 (4)
H27A1.1131−0.41291.04750.024 (5)*
H27B1.0848−0.27551.06280.031 (5)*
H27C1.1035−0.29680.99240.038 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02159 (18)0.0248 (2)0.01629 (17)0.00406 (15)0.01098 (14)0.00242 (14)
O10.0220 (5)0.0216 (6)0.0234 (5)0.0026 (5)0.0093 (4)0.0033 (5)
O20.0230 (6)0.0336 (7)0.0176 (5)0.0029 (5)0.0077 (5)0.0016 (5)
O30.0390 (7)0.0486 (9)0.0284 (6)0.0158 (7)0.0244 (6)0.0072 (6)
O40.0289 (6)0.0248 (7)0.0309 (6)0.0018 (5)0.0148 (5)0.0054 (5)
O1W0.0259 (7)0.0310 (8)0.0591 (9)0.0033 (6)0.0186 (7)0.0143 (7)
N10.0211 (6)0.0261 (8)0.0164 (6)0.0002 (5)0.0107 (5)0.0007 (5)
N20.0241 (6)0.0285 (8)0.0181 (6)0.0070 (6)0.0128 (5)0.0032 (5)
C10.0180 (7)0.0230 (8)0.0167 (6)−0.0035 (6)0.0065 (5)−0.0007 (6)
C20.0264 (8)0.0331 (10)0.0228 (7)0.0006 (7)0.0143 (7)−0.0013 (7)
C30.0326 (9)0.0343 (11)0.0284 (8)0.0044 (8)0.0175 (7)−0.0010 (7)
C40.0309 (9)0.0274 (10)0.0274 (8)0.0069 (7)0.0145 (7)0.0042 (7)
C50.0231 (7)0.0299 (10)0.0210 (7)0.0015 (7)0.0097 (6)0.0015 (7)
C60.0194 (7)0.0258 (9)0.0205 (7)−0.0050 (6)0.0102 (6)−0.0058 (6)
C70.0238 (7)0.0290 (9)0.0165 (6)−0.0025 (7)0.0109 (6)−0.0001 (6)
C80.0213 (7)0.0291 (9)0.0210 (7)0.0012 (7)0.0121 (6)0.0021 (6)
C90.0176 (6)0.0240 (9)0.0205 (7)−0.0033 (6)0.0099 (6)−0.0048 (6)
C100.0205 (7)0.0253 (9)0.0177 (6)0.0007 (6)0.0101 (6)−0.0001 (6)
C110.0207 (7)0.0237 (8)0.0171 (6)−0.0009 (6)0.0103 (6)−0.0007 (6)
C120.0179 (6)0.0217 (8)0.0173 (6)−0.0011 (6)0.0094 (5)−0.0020 (6)
C130.0215 (7)0.0276 (9)0.0169 (6)−0.0001 (6)0.0117 (6)0.0012 (6)
C140.0211 (7)0.0278 (9)0.0174 (6)0.0014 (6)0.0126 (6)−0.0017 (6)
C150.0169 (6)0.0208 (8)0.0158 (6)−0.0003 (6)0.0082 (5)−0.0020 (5)
C160.0202 (7)0.0256 (8)0.0160 (6)−0.0007 (6)0.0114 (6)−0.0005 (6)
C170.0180 (6)0.0275 (9)0.0178 (6)0.0009 (6)0.0114 (5)−0.0027 (6)
C180.0274 (8)0.0354 (10)0.0247 (8)0.0099 (8)0.0156 (7)0.0014 (7)
C190.0251 (8)0.0296 (9)0.0191 (7)0.0019 (7)0.0110 (6)0.0039 (6)
C200.0325 (9)0.0341 (10)0.0243 (8)0.0077 (8)0.0195 (7)0.0077 (7)
C210.0202 (7)0.0234 (8)0.0139 (6)0.0012 (6)0.0105 (5)0.0017 (6)
C220.0188 (7)0.0259 (9)0.0162 (6)−0.0012 (6)0.0093 (6)0.0004 (6)
C230.0247 (7)0.0210 (8)0.0178 (6)−0.0019 (6)0.0118 (6)0.0006 (6)
C240.0221 (7)0.0222 (8)0.0156 (6)0.0028 (6)0.0115 (6)0.0020 (6)
C250.0187 (7)0.0239 (8)0.0157 (6)−0.0011 (6)0.0080 (6)0.0000 (6)
C260.0221 (7)0.0210 (8)0.0175 (6)−0.0016 (6)0.0110 (6)−0.0006 (6)
C270.0216 (7)0.0300 (10)0.0230 (7)0.0039 (7)0.0095 (6)0.0039 (7)

Geometric parameters (Å, °)

S1—O31.4455 (13)C11—H11A0.9299
S1—O41.4602 (14)C12—C131.401 (2)
S1—O21.4628 (12)C12—C171.410 (2)
S1—C211.7754 (16)C13—C141.382 (2)
O1—C241.3644 (19)C13—H13A0.9301
O1—C271.431 (2)C14—C151.417 (2)
O1W—H1W0.8450C14—H14A0.9297
O1W—H2W0.8529C15—C161.415 (2)
N1—C91.353 (2)C16—C171.380 (2)
N1—C11.411 (2)C16—H16A0.9299
N1—C201.470 (2)C17—H17A0.9299
N2—C151.368 (2)C18—H18A0.9600
N2—C181.453 (2)C18—H18B0.9600
N2—C191.455 (2)C18—H18C0.9600
C1—C21.388 (2)C19—H19A0.9600
C1—C61.418 (2)C19—H19B0.9600
C2—C31.365 (3)C19—H19C0.9600
C2—H2A0.9299C20—H20A0.9600
C3—C41.402 (3)C20—H20B0.9600
C3—H3A0.9301C20—H20C0.9600
C4—C51.365 (3)C21—C261.387 (2)
C4—H4A0.9300C21—C221.398 (2)
C5—C61.429 (2)C22—C231.382 (2)
C5—H5A0.9301C22—H22A0.9300
C6—C71.409 (2)C23—C241.399 (2)
C7—C81.358 (2)C23—H23A0.9301
C7—H7A0.9300C24—C251.390 (2)
C8—C91.433 (2)C25—C261.393 (2)
C8—H8A0.9301C25—H25A0.9300
C9—C101.450 (2)C26—H26A0.9301
C10—C111.350 (2)C27—H27A0.9600
C10—H10A0.9299C27—H27B0.9600
C11—C121.447 (2)C27—H27C0.9600
O3—S1—O4113.13 (9)C13—C14—H14A119.6
O3—S1—O2113.11 (8)C15—C14—H14A119.6
O4—S1—O2112.31 (8)N2—C15—C16121.37 (14)
O3—S1—C21106.25 (7)N2—C15—C14121.43 (14)
O4—S1—C21105.80 (7)C16—C15—C14117.20 (14)
O2—S1—C21105.44 (8)C17—C16—C15121.17 (14)
C24—O1—C27118.33 (14)C17—C16—H16A119.4
H1W—O1W—H2W109.3C15—C16—H16A119.4
C9—N1—C1122.94 (14)C16—C17—C12121.62 (15)
C9—N1—C20119.79 (14)C16—C17—H17A119.2
C1—N1—C20117.24 (14)C12—C17—H17A119.2
C15—N2—C18120.55 (14)N2—C18—H18A109.5
C15—N2—C19120.40 (14)N2—C18—H18B109.5
C18—N2—C19118.91 (14)H18A—C18—H18B109.5
C2—C1—N1122.11 (15)N2—C18—H18C109.5
C2—C1—C6120.29 (16)H18A—C18—H18C109.5
N1—C1—C6117.60 (15)H18B—C18—H18C109.5
C3—C2—C1119.21 (17)N2—C19—H19A109.5
C3—C2—H2A120.4N2—C19—H19B109.5
C1—C2—H2A120.4H19A—C19—H19B109.5
C2—C3—C4121.91 (18)N2—C19—H19C109.5
C2—C3—H3A119.0H19A—C19—H19C109.5
C4—C3—H3A119.1H19B—C19—H19C109.5
C5—C4—C3120.31 (18)N1—C20—H20A109.5
C5—C4—H4A119.8N1—C20—H20B109.5
C3—C4—H4A119.8H20A—C20—H20B109.5
C4—C5—C6119.22 (16)N1—C20—H20C109.5
C4—C5—H5A120.5H20A—C20—H20C109.5
C6—C5—H5A120.3H20B—C20—H20C109.5
C7—C6—C1119.76 (16)C26—C21—C22119.36 (15)
C7—C6—C5121.21 (16)C26—C21—S1120.01 (13)
C1—C6—C5119.03 (16)C22—C21—S1120.63 (11)
C8—C7—C6120.31 (16)C23—C22—C21120.46 (14)
C8—C7—H7A119.8C23—C22—H22A119.7
C6—C7—H7A119.9C21—C22—H22A119.8
C7—C8—C9121.03 (16)C22—C23—C24119.73 (16)
C7—C8—H8A119.5C22—C23—H23A120.1
C9—C8—H8A119.5C24—C23—H23A120.2
N1—C9—C8118.18 (15)O1—C24—C25124.66 (14)
N1—C9—C10120.42 (14)O1—C24—C23115.07 (15)
C8—C9—C10121.40 (15)C25—C24—C23120.28 (15)
C11—C10—C9123.04 (15)C24—C25—C26119.41 (14)
C11—C10—H10A118.5C24—C25—H25A120.3
C9—C10—H10A118.5C26—C25—H25A120.3
C10—C11—C12126.36 (15)C21—C26—C25120.74 (16)
C10—C11—H11A116.8C21—C26—H26A119.6
C12—C11—H11A116.9C25—C26—H26A119.7
C13—C12—C17117.13 (15)O1—C27—H27A109.5
C13—C12—C11119.28 (14)O1—C27—H27B109.5
C17—C12—C11123.58 (15)H27A—C27—H27B109.5
C14—C13—C12121.99 (15)O1—C27—H27C109.5
C14—C13—H13A119.0H27A—C27—H27C109.5
C12—C13—H13A119.0H27B—C27—H27C109.5
C13—C14—C15120.88 (15)
C9—N1—C1—C2−175.88 (16)C12—C13—C14—C150.3 (2)
C20—N1—C1—C25.9 (2)C18—N2—C15—C16−179.39 (16)
C9—N1—C1—C64.6 (2)C19—N2—C15—C165.0 (2)
C20—N1—C1—C6−173.66 (15)C18—N2—C15—C140.4 (2)
N1—C1—C2—C3−178.39 (16)C19—N2—C15—C14−175.14 (15)
C6—C1—C2—C31.1 (3)C13—C14—C15—N2−179.73 (15)
C1—C2—C3—C40.4 (3)C13—C14—C15—C160.1 (2)
C2—C3—C4—C5−1.1 (3)N2—C15—C16—C17179.42 (15)
C3—C4—C5—C60.3 (3)C14—C15—C16—C17−0.4 (2)
C2—C1—C6—C7178.90 (16)C15—C16—C17—C120.4 (2)
N1—C1—C6—C7−1.6 (2)C13—C12—C17—C160.0 (2)
C2—C1—C6—C5−1.9 (2)C11—C12—C17—C16179.05 (15)
N1—C1—C6—C5177.59 (14)O3—S1—C21—C26−97.34 (14)
C4—C5—C6—C7−179.62 (17)O4—S1—C21—C2623.18 (15)
C4—C5—C6—C11.2 (2)O2—S1—C21—C26142.35 (13)
C1—C6—C7—C8−1.9 (2)O3—S1—C21—C2281.83 (14)
C5—C6—C7—C8178.93 (16)O4—S1—C21—C22−157.66 (13)
C6—C7—C8—C92.7 (3)O2—S1—C21—C22−38.48 (15)
C1—N1—C9—C8−3.9 (2)C26—C21—C22—C230.8 (2)
C20—N1—C9—C8174.28 (15)S1—C21—C22—C23−178.35 (12)
C1—N1—C9—C10176.41 (14)C21—C22—C23—C24−0.2 (2)
C20—N1—C9—C10−5.4 (2)C27—O1—C24—C253.9 (2)
C7—C8—C9—N10.2 (2)C27—O1—C24—C23−175.95 (14)
C7—C8—C9—C10179.86 (16)C22—C23—C24—O1179.57 (14)
N1—C9—C10—C11170.96 (15)C22—C23—C24—C25−0.3 (2)
C8—C9—C10—C11−8.7 (2)O1—C24—C25—C26−179.62 (14)
C9—C10—C11—C12−177.83 (15)C23—C24—C25—C260.2 (2)
C10—C11—C12—C13−177.82 (16)C22—C21—C26—C25−0.9 (2)
C10—C11—C12—C173.2 (3)S1—C21—C26—C25178.29 (12)
C17—C12—C13—C14−0.3 (2)C24—C25—C26—C210.4 (2)
C11—C12—C13—C14−179.40 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.842.042.875 (3)169
O1W—H2W···O4ii0.852.102.926 (2)161
C7—H7A···O3iii0.932.493.015 (3)116
C8—H8A···O3iii0.932.573.049 (3)113
C20—H20A···O4iv0.962.463.325 (2)151
C23—H23A···O1Wv0.932.443.365 (2)176
C26—H26A···O40.932.562.921 (2)104
C27—H27A···O1Wvi0.962.583.160 (3)119
C27—H27A···O1vii0.962.553.282 (2)133
C16—H16A···Cg1iv0.932.813.6513 (19)151

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) x, −y−1/2, z+1/2; (vi) −x+2, y−1/2, −z+3/2; (vii) −x+2, −y−1, −z+2.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2466).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007a). Anal. Sci.23, x81–x82.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007b). Acta Cryst. E63, o2124–o2126.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802–o1804.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci.23, x27–x28.
  • Chia, W.-L., Chen, C.-N. & Sheu, H.-J. (1995). Mater. Res. Bull.30, 1421–1430.
  • Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci.220, 88–95.
  • Jindawong, B., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2005). Acta Cryst. E61, o3237–o3239.
  • Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35–40.
  • Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.
  • Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met.101, 132–133.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography