PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m494.
Published online 2008 February 22. doi:  10.1107/S1600536808004765
PMCID: PMC2960771

Bis[2-(3-cyano­phenyl­imino­meth­yl)phenolato]nickel(II)

Abstract

In the title complex, [Ni(C14H9N2O)2], the NiII atom lies on an inversion center and is coordinated by the O atom and an N atom of two Schiff base 2-(3-cyano­phenyl­imino­meth­yl)phenolate ligands in a square-planar geometry. The dihedral angle between the cyano­phenyl and phenolate rings is 47.62 (7)°.

Related literature

For related literature, see: Adams et al. (2004 [triangle]); Bian et al. (2004 [triangle]); Brückner et al. (2000 [triangle]); Harrop et al. (2003 [triangle]); Marganian et al. (1995 [triangle]); Akkurt et al. (2006 [triangle]); Peng et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m494-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H9N2O)2]
  • M r = 501.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m494-efi1.jpg
  • a = 9.0294 (18) Å
  • b = 8.0856 (16) Å
  • c = 15.644 (3) Å
  • β = 104.01 (3)°
  • V = 1108.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 293 (2) K
  • 0.25 × 0.18 × 0.18 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.852, T max = 1.00 (expected range = 0.723–0.849)
  • 11052 measured reflections
  • 2540 independent reflections
  • 2246 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.090
  • S = 1.10
  • 2540 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004765/dn2310sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004765/dn2310Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HJX acknowledges a Start-up Grant from Southeast University, People’s Republic of China

supplementary crystallographic information

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry. These complexes play an important role in the development of pharmacological and catalytic properties (Harrop et al., 2003; Brückner et al., 2000). Nickel(II) compounds with Schiff bases have received much attention in recent years (Marganian et al., 1995). Here we report the molecular and crystal structure of nickel (II) complex with a Schiff base ligand.

The NiII atom in (I) lies on an inversion center and is coordinated by the two imine N and two phenolateO atoms of the two Schiff base ligands in a square-planar geometry (Fig.1). The dihedral angle between the cyanophenyl and phenyl rings is 47.62 (7)°.. The Ni—O and Ni—N bond lengths agree with the values reported for related complexes(Peng, et al., (2006); Adams et al., 2004; Bian et al., 2004).

Experimental

2-(3-cyanophenyliminomethyl)phenol was prepared according to the literature (Akkurt et al., 2006). NiCl2.6H2O(23.7 mg, 0.1 mmol) in methanol (5 ml) was added to the solution of 2-(3-cyanophenyliminomethyl)phenol (22.2 mg, 0.1 mmol)in the methanol (5 ml), the pH was then adjusted to 8–9 and the mixture was stirred for 4 h. The filtrate was kept at room temperature for about two weeks, and blue block shaped crystals of (I) suitable for for X-ray single-crystal analyses were obtained.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]

Crystal data

[Ni(C14H9N2O1)2]F000 = 516
Mr = 501.17Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10336 reflections
a = 9.0294 (18) Åθ = 3.1–27.4º
b = 8.0856 (16) ŵ = 0.91 mm1
c = 15.644 (3) ÅT = 293 (2) K
β = 104.01 (3)ºBlock, blue
V = 1108.1 (4) Å30.25 × 0.18 × 0.18 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer2540 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.1º
ω scansh = −11→11
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.852, Tmax = 1.00l = −20→20
11052 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0403P)2 + 0.5389P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2540 reflectionsΔρmax = 0.32 e Å3
160 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.50000.02514 (11)
O10.66446 (15)0.36034 (17)0.52053 (9)0.0349 (3)
N10.41172 (16)0.38940 (18)0.58415 (10)0.0266 (3)
C90.3215 (2)0.6210 (2)0.65595 (12)0.0302 (4)
H90.41590.67140.66130.036*
C140.2380 (2)0.8635 (3)0.72431 (15)0.0401 (5)
C10.5678 (2)0.1429 (2)0.59534 (12)0.0283 (4)
C100.2087 (2)0.6997 (2)0.68770 (12)0.0318 (4)
C80.2929 (2)0.4678 (2)0.61652 (12)0.0274 (4)
C110.0679 (2)0.6238 (3)0.68133 (14)0.0395 (5)
H11−0.00690.67590.70340.047*
C30.7949 (2)0.1080 (3)0.54150 (14)0.0383 (5)
H30.86630.14920.51300.046*
C20.6729 (2)0.2098 (2)0.55130 (11)0.0286 (4)
C130.1528 (2)0.3938 (3)0.60894 (15)0.0404 (5)
H130.13290.29140.58150.048*
C70.4475 (2)0.2409 (2)0.61321 (12)0.0297 (4)
H70.38970.19420.64880.036*
C50.7059 (3)−0.1167 (3)0.61697 (15)0.0432 (5)
H50.7169−0.22450.63820.052*
N20.2618 (3)0.9944 (2)0.75059 (17)0.0570 (6)
C120.0409 (2)0.4716 (3)0.64212 (17)0.0461 (6)
H12−0.05270.41990.63770.055*
C40.8094 (3)−0.0502 (3)0.57343 (15)0.0430 (5)
H40.8904−0.11490.56580.052*
C60.5875 (3)−0.0197 (2)0.62794 (14)0.0366 (4)
H60.5184−0.06250.65770.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02507 (18)0.02233 (17)0.03093 (19)0.00178 (12)0.01241 (13)0.00362 (12)
O10.0309 (7)0.0327 (7)0.0458 (8)0.0070 (6)0.0182 (6)0.0125 (6)
N10.0262 (7)0.0245 (7)0.0319 (7)−0.0009 (6)0.0124 (6)−0.0003 (6)
C90.0294 (9)0.0286 (9)0.0360 (9)−0.0003 (7)0.0146 (8)0.0016 (7)
C140.0431 (12)0.0363 (12)0.0480 (12)0.0067 (9)0.0247 (10)0.0000 (9)
C10.0305 (9)0.0236 (9)0.0309 (9)0.0009 (7)0.0075 (7)0.0007 (7)
C100.0348 (10)0.0305 (9)0.0332 (9)0.0058 (8)0.0140 (8)0.0022 (8)
C80.0282 (9)0.0272 (9)0.0300 (9)0.0015 (7)0.0133 (7)0.0023 (7)
C110.0327 (10)0.0449 (12)0.0461 (11)0.0093 (9)0.0194 (9)0.0032 (9)
C30.0335 (10)0.0412 (11)0.0425 (11)0.0088 (9)0.0134 (9)0.0043 (9)
C20.0294 (9)0.0282 (9)0.0278 (9)0.0036 (7)0.0064 (7)0.0020 (7)
C130.0348 (10)0.0378 (11)0.0521 (12)−0.0068 (9)0.0174 (9)−0.0090 (9)
C70.0315 (9)0.0263 (9)0.0335 (9)−0.0034 (7)0.0122 (7)0.0022 (7)
C50.0491 (13)0.0250 (10)0.0528 (13)0.0073 (9)0.0070 (10)0.0048 (9)
N20.0685 (15)0.0369 (11)0.0762 (15)−0.0001 (9)0.0379 (12)−0.0109 (10)
C120.0294 (10)0.0550 (14)0.0592 (14)−0.0081 (9)0.0212 (10)−0.0084 (11)
C40.0407 (12)0.0397 (11)0.0476 (12)0.0173 (9)0.0085 (9)0.0018 (10)
C60.0398 (11)0.0266 (10)0.0437 (11)−0.0013 (8)0.0104 (9)0.0045 (8)

Geometric parameters (Å, °)

Ni1—O1i1.8310 (14)C8—C131.378 (3)
Ni1—O11.8310 (14)C11—C121.371 (3)
Ni1—N1i1.9174 (15)C11—H110.9300
Ni1—N11.9174 (15)C3—C41.368 (3)
O1—C21.304 (2)C3—C21.413 (3)
N1—C71.297 (2)C3—H30.9300
N1—C81.440 (2)C13—C121.393 (3)
C9—C81.380 (3)C13—H130.9300
C9—C101.391 (3)C7—H70.9300
C9—H90.9300C5—C61.370 (3)
C14—N21.137 (3)C5—C41.390 (3)
C14—C101.442 (3)C5—H50.9300
C1—C61.406 (2)C12—H120.9300
C1—C21.409 (3)C4—H40.9300
C1—C71.426 (3)C6—H60.9300
C10—C111.393 (3)
O1i—Ni1—O1180.000 (1)C10—C11—H11120.4
O1i—Ni1—N1i92.65 (6)C4—C3—C2120.89 (19)
O1—Ni1—N1i87.35 (6)C4—C3—H3119.6
O1i—Ni1—N187.35 (6)C2—C3—H3119.6
O1—Ni1—N192.65 (6)O1—C2—C1123.56 (17)
N1i—Ni1—N1180.000 (1)O1—C2—C3118.75 (17)
C2—O1—Ni1127.78 (12)C1—C2—C3117.68 (17)
C7—N1—C8115.34 (15)C8—C13—C12120.4 (2)
C7—N1—Ni1124.25 (13)C8—C13—H13119.8
C8—N1—Ni1120.35 (12)C12—C13—H13119.8
C8—C9—C10119.75 (18)N1—C7—C1125.63 (17)
C8—C9—H9120.1N1—C7—H7117.2
C10—C9—H9120.1C1—C7—H7117.2
N2—C14—C10177.8 (2)C6—C5—C4118.5 (2)
C6—C1—C2119.71 (18)C6—C5—H5120.7
C6—C1—C7118.93 (18)C4—C5—H5120.7
C2—C1—C7121.21 (16)C11—C12—C13120.4 (2)
C9—C10—C11120.51 (18)C11—C12—H12119.8
C9—C10—C14118.81 (18)C13—C12—H12119.8
C11—C10—C14120.64 (18)C3—C4—C5121.6 (2)
C13—C8—C9119.78 (17)C3—C4—H4119.2
C13—C8—N1121.69 (17)C5—C4—H4119.2
C9—C8—N1118.53 (16)C5—C6—C1121.6 (2)
C12—C11—C10119.20 (19)C5—C6—H6119.2
C12—C11—H11120.4C1—C6—H6119.2

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2310).

References

  • Adams, H., Clunas, S. & Fenton, D. E. (2004). Acta Cryst. E60, m338–m339.
  • Akkurt, M., Karaca, S., Jarrahpour, A. A., Rezaei, S. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2156–o2157.
  • Bian, H.-D., Yang, X.-E., Yu, Q., Liang, H. & Wang, H.-G. (2004). Acta Cryst. E60, m685–m686.
  • Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem.39, 6100–6106. [PubMed]
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411. [PubMed]
  • Marganian, C. A., Vazir, H., Baidya, N., Olmstead, M. M. & Mascharak, P. K. (1995). J. Am. Chem. Soc.117, 1584–1594.
  • Peng, S., Zhou, C. & Yang, T. (2006). Acta Cryst. E62, m1066–m1068.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography