PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): o545.
Published online 2008 February 6. doi:  10.1107/S1600536808003206
PMCID: PMC2960769

3,8-Bis(4-chloro­phen­yl)-4,7-dimethyl­tricyclo­[4.2.2.02,5]deca-3,7-diene

Abstract

The title tricyclic diene, C24H22Cl2, is the product of thermal ring-opening of a corresponding basketane (penta­cyclo­[4.4.0.02,5.03,8.04,7]deca­ne) derivative. The cyclo­butene ring is planar to within 0.0032 (12) Å and its geometry is normal. The two 4-chloro­phenyl groups are oriented in an approximately face-to-face conformation with a dihedral angle of 44.14 (6)° between them. The 4-chloro­phenyl group bonded to the cyclo­butene ring lies almost in the plane of the cyclo­butene ring, with a dihedral angle of 8.29 (17)° between the ring planes. The average intra­molecular C(...)C distance between the two C=C bonds is 2.92 Å. In the crystal structure, the mol­ecules are well separated with no close C—H(...)Cl or C—H(...)π inter­molecular inter­actions.

Related literature

For the preparation of the title compound, see: Tezuka et al. (1976 [triangle]); Mukai et al. (1981 [triangle]). For cage compounds, see: Osawa & Yonemitsu (1992 [triangle]). For the crystal structures of compounds with a tricyclo­[4.2.2.02,5]deca-3,7-diene skeleton, see: Lemley et al. (1976 [triangle]); Hanson (1981 [triangle]); Mehta et al. (1990 [triangle], 2003 [triangle]). For related literature, see: Allen (1984 [triangle], 2002 [triangle]); Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o545-scheme1.jpg

Experimental

Crystal data

  • C24H22Cl2
  • M r = 381.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o545-efi1.jpg
  • a = 8.3389 (7) Å
  • b = 21.2224 (12) Å
  • c = 11.6074 (13) Å
  • β = 103.732 (7)°
  • V = 1995.5 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.94 mm−1
  • T = 295 (1) K
  • 0.48 × 0.35 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.328, T max = 0.484
  • 4348 measured reflections
  • 4070 independent reflections
  • 2872 reflections with I > 2σ(I)
  • R int = 0.021
  • 3 standard reflections frequency: 120 min intensity decay: 1.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.160
  • S = 1.04
  • 4070 reflections
  • 237 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: TEXSAN (Rigaku/MSC, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003206/sj2459sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003206/sj2459Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

supplementary crystallographic information

Comment

There is considerable interest in the chemistry of highly strained polycyclic "cage" compounds (Osawa & Yonemitsu, 1992). The title tricyclic diene, (I), Fig 1, 3,8-bis(4-chlorophenyl)-4,7-dimethyltricyclo[4.2.2.02,5] deca-3,7-diene, C24H22Cl2, is the product of thermal ring-opening of a corresponding basketane (pentacyclo[4.4.0.02,5.03,8.04,7]decane) and reverts to the basketane derivative quantitatively upon irradiation (Tezuka et al., 1976). A search for tricyclo[4.2.2.02,5]deca-3,7-diene skeleton in the Cambridge Structural Database (Version 5.29; Allen, 2002) gave only four examples, CTCYDD (Lemley et al., 1976), CNUNDC (Hanson, 1981), KEVGEX (Mehta et al., 1990) and GACFIA (Mehta et al., 2003).

Bond lengths and angles in the molecule are within the normal ranges (Allen et al., 1987) and the geometry of the cyclobutene ring is also similar to that of cyclobutene (Allen, 1984). The cyclobutene ring adopts a planar, rather than a puckered conformation, where the maximum deviation of the fitted atoms from the least-squares plane is 0.0032 (12) Å. The C3—C4 bond distance [1.562 (3) Å] in the cyclobutene ring is 1.8% shorter than the corresponding distance in the 2,3,4,5-tetrachloro derivative (Lemley et al., 1976). The two 4-chlorophenyl groups are oriented in an approximately face-to-face conformation with a dihedral angle of 44.14 (6)° between them. The 4-chlorophenyl group bonded to the cyclobutene ring lies almost in the plane of the cyclobutene ring with a dihedral angle of 8.29 (17)° between the ring planes. Upon irradiation, an intramolecular photocyclization occurs between the C1?C2 and C6?C7 bonds. Intramolecular C1···C6 and C2···C7 distances are 2.918 (3) and 2.921 (3) Å, respectively, and the dihedral angle between the cyclobutene plane (C1–C4) and the C5–C8 plane is 60.89 (12)°. In the crystal structure the molecules are well separated with no close C—H···Cl or C—H···π intermolecular interactions.

Experimental

The compound (I) was synthesized according to a literature method (Tezuka et al., 1976; Mukai et al., 1981). Colorless crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids for non-H atoms. H atoms are shown as small spheres with arbitrary radii.

Crystal data

C24H22Cl2F000 = 800
Mr = 381.32Dx = 1.269 Mg m3
Monoclinic, P21/cCu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.3389 (7) Åθ = 22.7–42.6º
b = 21.2224 (12) ŵ = 2.94 mm1
c = 11.6074 (13) ÅT = 295 (1) K
β = 103.732 (7)ºBlock, colorless
V = 1995.5 (3) Å30.48 × 0.35 × 0.25 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.021
Monochromator: graphiteθmax = 74.2º
T = 295(1) Kθmin = 4.2º
ω–2θ scansh = 0→10
Absorption correction: ψ scan(North et al., 1968)k = 0→26
Tmin = 0.328, Tmax = 0.484l = −14→14
4348 measured reflections3 standard reflections
4070 independent reflections every 120 min
2872 reflections with I > 2σ(I) intensity decay: 1.3%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.160  w = 1/[σ2(Fo2) + (0.0822P)2 + 0.357P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.007
4070 reflectionsΔρmax = 0.20 e Å3
237 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.49013 (12)0.19930 (4)1.21790 (6)0.1028 (3)
Cl21.19192 (12)0.35095 (4)0.98762 (11)0.1347 (4)
C10.7177 (3)0.00447 (11)0.7920 (3)0.0761 (7)
C20.6407 (3)0.05850 (10)0.8097 (2)0.0661 (5)
C30.5989 (3)0.07597 (11)0.6796 (2)0.0652 (5)
H30.48020.07500.64320.078*
C40.6896 (3)0.01375 (11)0.6609 (2)0.0749 (7)
H40.6163−0.01790.61440.090*
C50.8386 (3)0.03011 (12)0.6096 (2)0.0753 (7)
H50.9014−0.00790.60110.090*
C60.9467 (3)0.07722 (11)0.6897 (2)0.0656 (5)
C70.8686 (2)0.13047 (10)0.70463 (19)0.0600 (5)
C80.6880 (2)0.13196 (11)0.63804 (19)0.0618 (5)
H80.63640.17190.65150.074*
C90.6785 (3)0.12218 (14)0.5049 (2)0.0793 (7)
H9A0.56390.11960.46140.095*
H9B0.72900.15760.47430.095*
C100.7692 (3)0.06101 (14)0.4880 (2)0.0858 (8)
H10A0.85850.07040.45030.103*
H10B0.69340.03230.43720.103*
C110.8109 (4)−0.04637 (13)0.8691 (3)0.1037 (10)
H11A0.9228−0.04720.86090.156*
H11B0.7596−0.08630.84550.156*
H11C0.8102−0.03820.95030.156*
C121.1250 (3)0.06200 (12)0.7406 (3)0.0787 (7)
H12A1.18030.09850.78010.118*
H12B1.17560.04970.67790.118*
H12C1.13330.02810.79640.118*
C130.6085 (3)0.09224 (10)0.9117 (2)0.0617 (5)
C140.5426 (3)0.15260 (11)0.8976 (2)0.0721 (6)
H140.51940.17090.82270.086*
C150.5102 (3)0.18636 (12)0.9912 (2)0.0759 (6)
H150.46830.22710.97980.091*
C160.5404 (3)0.15904 (12)1.1008 (2)0.0710 (6)
C170.6047 (4)0.09927 (14)1.1188 (2)0.0875 (8)
H170.62480.08091.19360.105*
C180.6390 (4)0.06678 (12)1.0248 (2)0.0838 (7)
H180.68400.02661.03750.101*
C190.9420 (3)0.18508 (10)0.77687 (19)0.0574 (5)
C200.9320 (3)0.24474 (12)0.7278 (2)0.0772 (7)
H200.87390.25050.64960.093*
C211.0060 (4)0.29581 (13)0.7920 (3)0.0924 (9)
H210.99860.33550.75730.111*
C221.0901 (3)0.28762 (13)0.9069 (3)0.0810 (7)
C231.0954 (3)0.23022 (14)0.9607 (2)0.0826 (7)
H231.14860.22561.04030.099*
C241.0210 (3)0.17907 (12)0.8956 (2)0.0736 (6)
H241.02390.14000.93210.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1386 (7)0.1011 (5)0.0714 (4)−0.0031 (5)0.0303 (4)−0.0133 (3)
Cl20.1042 (6)0.0980 (6)0.1974 (11)−0.0306 (5)0.0271 (6)−0.0685 (6)
C10.0663 (14)0.0549 (12)0.1071 (19)0.0000 (10)0.0209 (13)−0.0022 (12)
C20.0562 (12)0.0574 (12)0.0851 (15)0.0019 (9)0.0176 (11)0.0013 (11)
C30.0487 (10)0.0662 (12)0.0783 (14)0.0005 (9)0.0103 (10)−0.0110 (11)
C40.0571 (12)0.0666 (14)0.1002 (18)−0.0060 (10)0.0171 (12)−0.0246 (13)
C50.0591 (12)0.0737 (14)0.0931 (17)0.0031 (11)0.0181 (12)−0.0285 (13)
C60.0520 (11)0.0691 (13)0.0746 (14)0.0025 (10)0.0127 (10)−0.0114 (11)
C70.0524 (11)0.0636 (12)0.0625 (12)0.0005 (9)0.0110 (9)−0.0040 (9)
C80.0530 (11)0.0680 (12)0.0626 (12)0.0069 (9)0.0104 (9)−0.0029 (10)
C90.0639 (13)0.108 (2)0.0635 (13)0.0046 (13)0.0109 (11)−0.0095 (13)
C100.0675 (14)0.113 (2)0.0764 (16)−0.0002 (14)0.0156 (12)−0.0309 (15)
C110.101 (2)0.0642 (15)0.150 (3)0.0211 (14)0.039 (2)0.0158 (17)
C120.0565 (12)0.0775 (15)0.0983 (18)0.0090 (11)0.0107 (12)−0.0098 (13)
C130.0554 (11)0.0564 (11)0.0729 (13)0.0017 (9)0.0141 (10)0.0067 (10)
C140.0868 (16)0.0643 (13)0.0687 (13)0.0126 (11)0.0255 (12)0.0139 (11)
C150.0925 (17)0.0610 (13)0.0795 (15)0.0102 (12)0.0308 (13)0.0075 (11)
C160.0742 (14)0.0717 (14)0.0666 (13)−0.0071 (11)0.0157 (11)−0.0029 (11)
C170.105 (2)0.0858 (17)0.0691 (15)0.0102 (16)0.0156 (14)0.0184 (13)
C180.0937 (18)0.0691 (15)0.0869 (17)0.0185 (13)0.0180 (14)0.0162 (13)
C190.0526 (10)0.0575 (11)0.0636 (12)0.0002 (8)0.0163 (9)−0.0031 (9)
C200.0820 (16)0.0708 (15)0.0762 (15)−0.0063 (12)0.0137 (12)0.0103 (12)
C210.095 (2)0.0620 (14)0.121 (2)−0.0147 (13)0.0270 (18)0.0067 (15)
C220.0630 (14)0.0708 (15)0.112 (2)−0.0092 (11)0.0267 (14)−0.0259 (15)
C230.0796 (17)0.0903 (18)0.0723 (15)−0.0016 (13)0.0067 (12)−0.0191 (14)
C240.0837 (16)0.0633 (13)0.0685 (14)−0.0029 (11)0.0075 (12)0.0006 (11)

Geometric parameters (Å, °)

Cl1—C161.739 (3)C11—H11A0.9600
Cl2—C221.740 (3)C11—H11B0.9600
C1—C21.353 (3)C11—H11C0.9600
C1—C111.496 (4)C12—H12A0.9600
C1—C41.496 (4)C12—H12B0.9600
C2—C131.462 (3)C12—H12C0.9600
C2—C31.513 (3)C13—C181.386 (3)
C3—C81.538 (3)C13—C141.388 (3)
C3—C41.562 (3)C14—C151.381 (3)
C3—H30.9800C14—H140.9300
C4—C51.540 (3)C15—C161.366 (3)
C4—H40.9800C15—H150.9300
C5—C61.510 (3)C16—C171.374 (4)
C5—C101.539 (4)C17—C181.377 (4)
C5—H50.9800C17—H170.9300
C6—C71.336 (3)C18—H180.9300
C6—C121.499 (3)C19—C201.383 (3)
C7—C191.476 (3)C19—C241.385 (3)
C7—C81.521 (3)C20—C211.376 (4)
C8—C91.543 (3)C20—H200.9300
C8—H80.9800C21—C221.363 (4)
C9—C101.538 (4)C21—H210.9300
C9—H9A0.9700C22—C231.365 (4)
C9—H9B0.9700C23—C241.383 (3)
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700C24—H240.9300
C2—C1—C11135.9 (3)C1—C11—H11A109.5
C2—C1—C494.5 (2)C1—C11—H11B109.5
C11—C1—C4129.5 (2)H11A—C11—H11B109.5
C1—C2—C13136.3 (2)C1—C11—H11C109.5
C1—C2—C393.5 (2)H11A—C11—H11C109.5
C13—C2—C3130.17 (19)H11B—C11—H11C109.5
C2—C3—C8119.23 (18)C6—C12—H12A109.5
C2—C3—C485.80 (18)C6—C12—H12B109.5
C8—C3—C4108.89 (17)H12A—C12—H12B109.5
C2—C3—H3113.3C6—C12—H12C109.5
C8—C3—H3113.3H12A—C12—H12C109.5
C4—C3—H3113.3H12B—C12—H12C109.5
C1—C4—C5118.5 (2)C18—C13—C14116.7 (2)
C1—C4—C386.23 (18)C18—C13—C2123.2 (2)
C5—C4—C3109.0 (2)C14—C13—C2120.0 (2)
C1—C4—H4113.4C15—C14—C13122.2 (2)
C5—C4—H4113.4C15—C14—H14118.9
C3—C4—H4113.4C13—C14—H14118.9
C6—C5—C10108.8 (2)C16—C15—C14119.0 (2)
C6—C5—C4109.20 (19)C16—C15—H15120.5
C10—C5—C4106.8 (2)C14—C15—H15120.5
C6—C5—H5110.6C15—C16—C17120.9 (2)
C10—C5—H5110.6C15—C16—Cl1119.6 (2)
C4—C5—H5110.6C17—C16—Cl1119.5 (2)
C7—C6—C12126.8 (2)C16—C17—C18119.3 (2)
C7—C6—C5113.71 (19)C16—C17—H17120.4
C12—C6—C5119.4 (2)C18—C17—H17120.4
C6—C7—C19126.06 (19)C17—C18—C13122.0 (2)
C6—C7—C8113.95 (19)C17—C18—H18119.0
C19—C7—C8119.98 (18)C13—C18—H18119.0
C7—C8—C3108.55 (18)C20—C19—C24117.5 (2)
C7—C8—C9108.40 (18)C20—C19—C7120.6 (2)
C3—C8—C9107.24 (19)C24—C19—C7121.9 (2)
C7—C8—H8110.8C21—C20—C19121.5 (2)
C3—C8—H8110.8C21—C20—H20119.2
C9—C8—H8110.8C19—C20—H20119.2
C10—C9—C8109.4 (2)C22—C21—C20119.3 (3)
C10—C9—H9A109.8C22—C21—H21120.3
C8—C9—H9A109.8C20—C21—H21120.3
C10—C9—H9B109.8C21—C22—C23121.0 (2)
C8—C9—H9B109.8C21—C22—Cl2120.0 (2)
H9A—C9—H9B108.3C23—C22—Cl2119.0 (2)
C9—C10—C5109.39 (19)C22—C23—C24119.2 (2)
C9—C10—H10A109.8C22—C23—H23120.4
C5—C10—H10A109.8C24—C23—H23120.4
C9—C10—H10B109.8C23—C24—C19121.2 (2)
C5—C10—H10B109.8C23—C24—H24119.4
H10A—C10—H10B108.2C19—C24—H24119.4
C11—C1—C2—C13−1.7 (5)C4—C3—C8—C961.1 (2)
C4—C1—C2—C13−177.6 (3)C7—C8—C9—C1054.9 (3)
C11—C1—C2—C3176.4 (3)C3—C8—C9—C10−62.1 (2)
C4—C1—C2—C30.50 (19)C8—C9—C10—C50.1 (3)
C1—C2—C3—C8−109.8 (2)C6—C5—C10—C9−55.6 (3)
C13—C2—C3—C868.5 (3)C4—C5—C10—C962.2 (3)
C1—C2—C3—C4−0.48 (18)C1—C2—C13—C18−9.6 (4)
C13—C2—C3—C4177.8 (2)C3—C2—C13—C18172.8 (2)
C2—C1—C4—C5109.1 (2)C1—C2—C13—C14171.1 (3)
C11—C1—C4—C5−67.2 (3)C3—C2—C13—C14−6.5 (4)
C2—C1—C4—C3−0.48 (18)C18—C13—C14—C150.7 (4)
C11—C1—C4—C3−176.8 (3)C2—C13—C14—C15−179.9 (2)
C2—C3—C4—C10.43 (16)C13—C14—C15—C16−1.5 (4)
C8—C3—C4—C1119.93 (19)C14—C15—C16—C171.1 (4)
C2—C3—C4—C5−118.5 (2)C14—C15—C16—Cl1−176.6 (2)
C8—C3—C4—C51.0 (3)C15—C16—C17—C180.1 (4)
C1—C4—C5—C6−41.3 (3)Cl1—C16—C17—C18177.8 (2)
C3—C4—C5—C654.8 (3)C16—C17—C18—C13−0.9 (5)
C1—C4—C5—C10−158.8 (2)C14—C13—C18—C170.5 (4)
C3—C4—C5—C10−62.6 (2)C2—C13—C18—C17−178.8 (3)
C10—C5—C6—C757.9 (3)C6—C7—C19—C20125.7 (3)
C4—C5—C6—C7−58.3 (3)C8—C7—C19—C20−54.0 (3)
C10—C5—C6—C12−120.4 (2)C6—C7—C19—C24−55.3 (3)
C4—C5—C6—C12123.4 (2)C8—C7—C19—C24125.1 (2)
C12—C6—C7—C19−1.3 (4)C24—C19—C20—C213.9 (4)
C5—C6—C7—C19−179.5 (2)C7—C19—C20—C21−177.0 (2)
C12—C6—C7—C8178.3 (2)C19—C20—C21—C22−0.5 (4)
C5—C6—C7—C80.2 (3)C20—C21—C22—C23−3.1 (4)
C6—C7—C8—C358.3 (3)C20—C21—C22—Cl2177.3 (2)
C19—C7—C8—C3−122.0 (2)C21—C22—C23—C243.2 (4)
C6—C7—C8—C9−57.9 (3)Cl2—C22—C23—C24−177.2 (2)
C19—C7—C8—C9121.8 (2)C22—C23—C24—C190.3 (4)
C2—C3—C8—C740.1 (3)C20—C19—C24—C23−3.7 (4)
C4—C3—C8—C7−55.8 (2)C7—C19—C24—C23177.2 (2)
C2—C3—C8—C9156.98 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2459).

References

  • Allen, F. H. (1984). Acta Cryst. B40, 64–72.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1992). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.
  • Hanson, A. H. (1981). Cryst. Struct. Commun.10, 319–325.
  • Lemley, J. T., Stezowski, J. J. & Hughes, R. E. (1976). Acta Cryst. B32, 1212–1215.
  • Mehta, G., Le Droumaguet, C., Islam, K., Anoop, A. & Jemmis, E. D. (2003). Tetrahedron Lett.44, 3109–3113.
  • Mehta, G., Padma, S., Pattabhi, V., Pramanik, A. & Chandrasekhar, J. (1990). J. Am. Chem. Soc.112, 2942–2949.
  • Mukai, T., Sato, K. & Yamashita, Y. (1981). J. Am. Chem. Soc.103, 670–672.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Osawa, E. & Yonemitsu, O. (1992). Carbocyclic Cage Compounds Weinheim: VCH.
  • Rigaku/MSC (2000). TEXSAN Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tezuka, T., Yamashita, Y. & Mukai, T. (1976). J. Am. Chem. Soc.98, 6051–6052.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography