PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 March 1; 64(Pt 3): m439.
Published online 2008 February 6. doi:  10.1107/S1600536808002882
PMCID: PMC2960759

[N,N′-(1,2-Diphenyl­ethane-1,2-di­yl)bis­(pyridine-2-carboxamidato)]nickel(II) diethyl ether hemisolvate

Abstract

In the title compound, [Ni(C26H20N4O2)]·0.5C4H10O, the central metal ion is coordinated by four atoms of the tetra­dentate picolinamide ligand, forming a slightly distorted square-planar configuration, with an average Ni—N(pyridine) distance of 1.94 Å and an average Ni—N(amide) distance of 1.83 Å. The asymmetric unit contains one half-molecule of diethyl ether; this solvent molecule is disordered across a twofold rotation axis..

Related literature

For related literature, see: Barnes et al. (1981 [triangle]); Doukov et al. (2002 [triangle]); Fenton et al. (1991 [triangle]); Halcrow et al. (1994 [triangle]); Mulqi et al. (1981 [triangle]); Yang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m439-scheme1.jpg

Experimental

Crystal data

  • [Ni(C26H20N4O2)]·0.5C4H10O
  • M r = 516.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m439-efi1.jpg
  • a = 21.838 (3) Å
  • b = 11.1675 (15) Å
  • c = 11.0443 (15) Å
  • β = 100.949 (3)°
  • V = 2644.5 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 294 (2) K
  • 0.38 × 0.14 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.879, T max = 0.956
  • 12577 measured reflections
  • 6078 independent reflections
  • 3405 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.162
  • S = 1.01
  • 6078 reflections
  • 325 parameters
  • 17 restraints
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.43 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2840 Friedel pairs
  • Flack parameter: 0.03 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808002882/av2001sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808002882/av2001Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the NSFC (grant Nos. 20672075, 20771076) and the Student Innovation Foundation of Sichuan University.

supplementary crystallographic information

Comment

Nickel exists in organism as a trace element and it often acts as component or secondary factor of enzyme (Doukov et al., 2002). In the latest two decades, the coordination chemistry of nickel has made a great progress (Halcrow et al., 1994). On the other hand, pyridine carboxamides, being a burgeoning class of multidentate ligands, are available easily from condensation reactions of pyridine carboxylic acid and amine. Continuing of our study in the synthesis and application of complexes containing picolinamide ligands in catalysis (Yang et al., 2007), herein is reported the crystal structure of Ni(II) with chiral pyridine carboxamide ligand, 1,2-bis(2-pyridinecarboxamido)-1,2-diphenylethane(s,s-bpdpeH2).

Selected bond lengths and angles in the title compound are listed in Table 1. Figure 1 shows a perspective drawing of the molecule with atom labeling. In the title compound, there is one solvent ether molecules per two complex molecules. X-Ray crystallography revealed that the nickel ion coordinates with the four nitrogen atoms of picolinamide ligand with Ni–N bond distances ranging from 1.8227 (13) to 1.9527 (17) Å. The sum of the four N—Ni—N angles is 360.48°. The dihedral angle between the two pyridyl rings is less than 2°, the Ni(II) ion seems to form a slightly distorted square plane configuration. Furthermore, the Ni—N(amide) distances are shorter than the Ni—N(pyridine) distances, which is similar with the reported complex such as [Ni(bcph)](H2bpch=1, 2-bis(2-pyridinecarboxamido)-1, 2- cyclohexane) with Ni—N(amide)=1.87 Å and Ni—N(pyridine)=1.94 Å (Mulqi et al., 1981).

Experimental

The ligand was prepared by a previously described method (Fenton et al., 1991). The title complex was obtained analogous to (Barnes et al., 1981). Single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a DMF solution of the complex. Selected IR data (KBr, cm-1): 2980 (m), 1650 (amide I band, s), 1610(amide II band, s), 1470 (s), 1360 (s), 1120(s), 1020 (m), 870 (m). Analysis calculated for C26H20N4NiO2: C 65.17, H 4.21, N 11.69%; found: C 65.23, H 4.43, N 11.54%. MS (FAB): 479([Ni(bpdpe)]+).

Refinement

All H atoms of the complex were positioned geometrically and refined as riding, with C—H = 0.93 Å(aromatic) and 0.98 Å(methylene) with Uiso(H) =1.2Ueq(aromatic, methylene).

When solvent disorder was treated, there are 4 larger electron density peaks in different electron density map (Fourier synthesis). And two peaks are located on special positions. These special positions are considered as disorder oxygen atom of ether, O3 and O3'. When these peaks are grown, the whole ether molecule was got. O3 and O3' have occupancy factor as 0.5 defined by special position.

Figures

Fig. 1.
1 A view of [Ni(C26H20N4O2)].1/2(C2H5OC2H5), with displacement ellipsoids drawn at the 30% propability level.

Crystal data

[Ni(C26H20N4O2)]·0.5C4H10OF000 = 1076
Mr = 516.23Dx = 1.297 Mg m3
Monoclinic, C2Mo Kα radiation λ = 0.71073 Å
a = 21.838 (3) ÅCell parameters from 4983 reflections
b = 11.1675 (15) Åθ = 1–27.5º
c = 11.0443 (15) ŵ = 0.77 mm1
β = 100.949 (3)ºT = 294 (2) K
V = 2644.5 (6) Å3Needle, green
Z = 40.38 × 0.14 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer6078 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.067
T = 294(2) Kθmax = 27.6º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −28→28
Tmin = 0.879, Tmax = 0.956k = −14→14
12577 measured reflectionsl = −14→13

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058  w = 1/[σ2(Fo2) + (0.067P)2] and P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max = 0.007
S = 1.01Δρmax = 0.82 e Å3
6078 reflectionsΔρmin = −0.43 e Å3
325 parametersExtinction correction: none
17 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes..
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.685445 (11)0.41062 (2)0.575362 (19)0.03992 (6)
O10.68109 (9)0.75302 (12)0.48680 (13)0.0649 (6)
O20.71735 (10)0.29814 (15)0.91975 (14)0.0807 (7)
N10.69128 (8)0.57385 (15)0.59271 (15)0.0448 (6)
N20.67548 (8)0.44546 (14)0.40053 (15)0.0463 (6)
N30.70417 (7)0.41280 (19)0.74336 (12)0.0404 (4)
N40.67459 (9)0.23904 (15)0.59807 (15)0.0472 (6)
C10.73171 (10)0.52214 (17)0.80298 (19)0.0427 (6)
H10.71990.53050.88390.051*
C20.70105 (11)0.62494 (17)0.71610 (18)0.0437 (7)
H20.73130.69040.72020.052*
C30.68186 (11)0.64212 (19)0.49332 (19)0.0501 (7)
C40.67389 (11)0.56614 (19)0.37879 (19)0.0455 (7)
C50.66656 (13)0.6111 (2)0.2626 (2)0.0642 (9)
H50.66220.69330.25060.077*
C60.66545 (15)0.5382 (2)0.1635 (2)0.0763 (10)
H60.66180.56910.08430.092*
C70.66992 (12)0.4171 (3)0.18509 (18)0.0763 (8)
H70.67000.36420.12010.092*
C80.67431 (12)0.37406 (18)0.30362 (19)0.0579 (8)
H80.67650.29170.31630.069*
C90.70290 (12)0.3139 (2)0.8047 (2)0.0528 (8)
C100.68154 (12)0.21015 (19)0.7192 (2)0.0480 (7)
C110.67415 (14)0.0961 (2)0.7604 (2)0.0704 (9)
H110.67930.07980.84430.084*
C120.65897 (14)0.0069 (2)0.6752 (2)0.0777 (10)
H120.6520−0.07040.70080.093*
C130.65399 (16)0.0315 (2)0.5531 (3)0.0847 (11)
H130.6464−0.02940.49470.102*
C140.66052 (14)0.1488 (2)0.5177 (2)0.0718 (10)
H140.65490.16600.43390.086*
C150.80143 (10)0.52376 (17)0.81812 (17)0.0390 (6)
C160.83346 (10)0.45226 (18)0.74753 (19)0.0507 (7)
H160.81150.40010.68940.061*
C170.89797 (11)0.4584 (2)0.7635 (2)0.0614 (8)
H170.91890.40980.71630.074*
C180.93127 (12)0.5359 (2)0.8487 (2)0.0700 (10)
H180.97450.54000.85920.084*
C190.90017 (11)0.6058 (2)0.9169 (2)0.0680 (9)
H190.92240.65800.97470.082*
C200.83604 (11)0.60110 (19)0.9019 (2)0.0579 (8)
H200.81570.65090.94920.070*
C210.64296 (11)0.67357 (18)0.7536 (2)0.0484 (7)
C220.64900 (12)0.7353 (2)0.86491 (19)0.0651 (9)
H220.68860.74570.91240.078*
C230.59732 (12)0.7826 (3)0.9082 (2)0.0837 (10)
H230.60230.82220.98350.100*
C240.54060 (14)0.7686 (3)0.8374 (2)0.1052 (12)
H240.50600.79880.86490.126*
C250.53215 (14)0.7107 (3)0.7252 (3)0.1189 (15)
H250.49260.70420.67660.143*
C260.58374 (12)0.6620 (3)0.6855 (3)0.0820 (11)
H260.57790.62070.61100.098*
C280.5081 (3)0.3730 (6)0.7884 (4)0.364 (3)
H28A0.54510.33510.76250.545*
H28B0.49320.43320.73100.545*
H28C0.47790.31020.78700.545*
C270.5289 (3)0.4225 (3)0.9168 (4)0.251 (3)
H27A0.54300.35170.96550.301*
H27B0.56540.46710.91130.301*
O30.50000.4919 (6)1.00000.219 (6)0.50
O3'0.50000.3518 (7)1.00000.380 (6)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.06559 (13)0.02383 (9)0.03095 (10)0.00039 (17)0.01070 (9)0.00210 (15)
O10.1240 (13)0.0250 (8)0.0457 (9)0.0052 (9)0.0160 (9)0.0088 (7)
O20.1566 (16)0.0453 (9)0.0339 (8)−0.0197 (11)0.0019 (10)0.0124 (8)
N10.0760 (12)0.0243 (8)0.0353 (9)0.0007 (9)0.0135 (9)0.0004 (7)
N20.0710 (11)0.0316 (10)0.0374 (9)0.0087 (8)0.0134 (8)0.0049 (7)
N30.0659 (9)0.0242 (6)0.0322 (7)0.0023 (13)0.0121 (6)0.0067 (11)
N40.0769 (13)0.0262 (9)0.0393 (9)−0.0040 (9)0.0135 (9)−0.0007 (8)
C10.0740 (14)0.0244 (9)0.0277 (10)−0.0028 (10)0.0046 (10)−0.0016 (8)
C20.0765 (14)0.0247 (10)0.0303 (10)−0.0015 (10)0.0116 (10)−0.0004 (9)
C30.0876 (16)0.0279 (10)0.0345 (11)−0.0060 (11)0.0106 (11)0.0093 (9)
C40.0681 (14)0.0292 (10)0.0391 (11)0.0008 (10)0.0100 (11)0.0042 (9)
C50.1020 (19)0.0462 (14)0.0438 (13)0.0003 (14)0.0126 (13)0.0142 (11)
C60.155 (2)0.0498 (14)0.0255 (11)−0.0059 (16)0.0196 (14)0.0090 (11)
C70.1395 (19)0.0557 (13)0.0351 (10)0.003 (2)0.0202 (12)−0.0076 (17)
C80.1057 (18)0.0313 (12)0.0371 (11)0.0017 (11)0.0143 (12)−0.0059 (9)
C90.0805 (16)0.0366 (11)0.0392 (12)−0.0092 (12)0.0064 (12)0.0019 (11)
C100.0764 (15)0.0277 (10)0.0385 (11)−0.0036 (11)0.0071 (11)0.0032 (10)
C110.126 (2)0.0362 (12)0.0477 (14)−0.0156 (14)0.0135 (15)0.0124 (11)
C120.138 (2)0.0313 (12)0.0627 (16)−0.0212 (15)0.0159 (16)0.0045 (12)
C130.164 (3)0.0283 (12)0.0686 (17)−0.0175 (16)0.0389 (17)−0.0009 (12)
C140.130 (2)0.0402 (13)0.0430 (14)−0.0073 (16)0.0109 (15)−0.0037 (12)
C150.0572 (13)0.0281 (10)0.0299 (10)0.0041 (10)0.0038 (10)0.0008 (9)
C160.0786 (15)0.0347 (11)0.0374 (11)0.0045 (11)0.0078 (11)−0.0029 (9)
C170.0718 (16)0.0565 (15)0.0536 (14)0.0109 (12)0.0061 (13)−0.0005 (12)
C180.0674 (16)0.0630 (16)0.0749 (18)0.0069 (15)0.0016 (15)0.0033 (15)
C190.0727 (17)0.0471 (14)0.0736 (18)−0.0122 (13)−0.0130 (15)−0.0155 (13)
C200.0940 (18)0.0326 (11)0.0450 (12)−0.0006 (13)0.0075 (13)−0.0119 (10)
C210.0674 (14)0.0300 (11)0.0467 (12)0.0131 (11)0.0082 (11)−0.0017 (10)
C220.1067 (19)0.0447 (14)0.0461 (13)0.0150 (14)0.0198 (13)−0.0005 (12)
C230.134 (2)0.0629 (16)0.0640 (15)0.0292 (17)0.0439 (14)0.0049 (14)
C240.111 (2)0.134 (3)0.0792 (18)0.0655 (19)0.0387 (15)0.0075 (19)
C250.081 (2)0.149 (3)0.126 (3)0.053 (2)0.017 (2)−0.004 (3)
C260.0860 (19)0.091 (2)0.0678 (18)0.0157 (17)0.0106 (16)−0.0138 (16)
C280.301 (5)0.388 (7)0.344 (7)−0.243 (5)−0.087 (6)0.170 (6)
C270.293 (6)0.249 (7)0.188 (5)0.067 (7)−0.011 (5)−0.015 (6)
O30.167 (8)0.173 (9)0.306 (14)0.0000.022 (9)0.000
O3'0.382 (16)0.400 (3)0.398 (3)−0.26 (2)0.176 (13)−0.13 (4)

Geometric parameters (Å, °)

Ni1—N31.8227 (13)C13—C141.383 (4)
Ni1—N11.8349 (17)C13—H130.9300
Ni1—N21.9410 (17)C14—H140.9300
Ni1—N41.9527 (17)C15—C201.381 (3)
O1—C31.241 (3)C15—C161.394 (3)
O2—C91.263 (3)C16—C171.388 (3)
N1—C31.320 (3)C16—H160.9300
N1—C21.455 (3)C17—C181.380 (3)
N2—C81.331 (3)C17—H170.9300
N2—C41.368 (3)C18—C191.354 (4)
N3—C91.298 (3)C18—H180.9300
N3—C11.461 (3)C19—C201.380 (3)
N4—C141.339 (3)C19—H190.9300
N4—C101.357 (3)C20—H200.9300
C1—C151.500 (3)C21—C261.373 (3)
C1—C21.563 (3)C21—C221.393 (3)
C1—H10.9800C22—C231.409 (4)
C2—C211.509 (3)C22—H220.9300
C2—H20.9800C23—C241.342 (4)
C3—C41.506 (3)C23—H230.9300
C4—C51.359 (3)C24—C251.378 (4)
C5—C61.361 (3)C24—H240.9300
C5—H50.9300C25—C261.395 (4)
C6—C71.373 (4)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.381 (3)C28—C271.510 (6)
C7—H70.9300C28—H28A1.0002
C8—H80.9300C28—H28B0.9388
C9—C101.511 (3)C28—H28C0.9612
C10—C111.372 (3)C27—O31.436 (6)
C11—C121.366 (3)C27—H27A0.9730
C11—H110.9300C27—H27B0.9523
C12—C131.360 (4)O3—C27i1.436 (6)
C12—H120.9300
N3—Ni1—N183.26 (8)C13—C12—H12120.0
N3—Ni1—N2166.18 (8)C11—C12—H12120.0
N1—Ni1—N284.10 (7)C12—C13—C14118.6 (2)
N3—Ni1—N483.78 (8)C12—C13—H13120.7
N1—Ni1—N4165.74 (8)C14—C13—H13120.7
N2—Ni1—N4109.33 (7)N4—C14—C13123.3 (2)
C3—N1—C2121.62 (17)N4—C14—H14118.4
C3—N1—Ni1119.35 (14)C13—C14—H14118.4
C2—N1—Ni1118.83 (13)C20—C15—C16117.7 (2)
C8—N2—C4116.94 (17)C20—C15—C1119.79 (19)
C8—N2—Ni1131.39 (14)C16—C15—C1122.51 (17)
C4—N2—Ni1111.49 (13)C17—C16—C15120.40 (19)
C9—N3—C1121.56 (15)C17—C16—H16119.8
C9—N3—Ni1119.77 (16)C15—C16—H16119.8
C1—N3—Ni1117.61 (14)C18—C17—C16120.5 (2)
C14—N4—C10116.33 (19)C18—C17—H17119.7
C14—N4—Ni1132.16 (16)C16—C17—H17119.7
C10—N4—Ni1111.49 (13)C19—C18—C17119.1 (2)
N3—C1—C15112.49 (17)C19—C18—H18120.4
N3—C1—C2104.21 (15)C17—C18—H18120.4
C15—C1—C2111.53 (18)C18—C19—C20121.1 (2)
N3—C1—H1109.5C18—C19—H19119.5
C15—C1—H1109.5C20—C19—H19119.5
C2—C1—H1109.5C19—C20—C15121.2 (2)
N1—C2—C21114.66 (17)C19—C20—H20119.4
N1—C2—C1104.85 (16)C15—C20—H20119.4
C21—C2—C1112.35 (18)C26—C21—C22116.8 (2)
N1—C2—H2108.2C26—C21—C2124.7 (2)
C21—C2—H2108.2C22—C21—C2118.5 (2)
C1—C2—H2108.2C21—C22—C23122.5 (2)
O1—C3—N1128.5 (2)C21—C22—H22118.8
O1—C3—C4121.05 (19)C23—C22—H22118.8
N1—C3—C4110.37 (18)C24—C23—C22118.0 (3)
C5—C4—N2121.6 (2)C24—C23—H23121.0
C5—C4—C3124.0 (2)C22—C23—H23121.0
N2—C4—C3114.37 (18)C23—C24—C25121.9 (3)
C4—C5—C6121.3 (2)C23—C24—H24119.0
C4—C5—H5119.4C25—C24—H24119.0
C6—C5—H5119.4C24—C25—C26119.2 (3)
C5—C6—C7117.4 (2)C24—C25—H25120.4
C5—C6—H6121.3C26—C25—H25120.4
C7—C6—H6121.3C21—C26—C25121.6 (3)
C6—C7—C8119.8 (2)C21—C26—H26119.2
C6—C7—H7120.1C25—C26—H26119.2
C8—C7—H7120.1C27—C28—H28A108.0
N2—C8—C7122.8 (2)C27—C28—H28B112.0
N2—C8—H8118.6H28A—C28—H28B107.9
C7—C8—H8118.6C27—C28—H28C111.4
O2—C9—N3128.2 (2)H28A—C28—H28C106.1
O2—C9—C10120.6 (2)H28B—C28—H28C111.2
N3—C9—C10111.19 (18)O3—C27—C28135.1 (5)
N4—C10—C11123.3 (2)O3—C27—H27A102.5
N4—C10—C9113.38 (19)C28—C27—H27A103.2
C11—C10—C9123.2 (2)O3—C27—H27B103.6
C12—C11—C10118.5 (2)C28—C27—H27B103.7
C12—C11—H11120.7H27A—C27—H27B106.1
C10—C11—H11120.7C27—O3—C27i114.7 (6)
C13—C12—C11119.9 (2)
N3—Ni1—N1—C3−179.99 (19)C4—C5—C6—C72.1 (4)
N2—Ni1—N1—C35.60 (18)C5—C6—C7—C81.0 (4)
N4—Ni1—N1—C3−155.1 (3)C4—N2—C8—C7−1.8 (4)
N3—Ni1—N1—C2−5.08 (16)Ni1—N2—C8—C7−176.47 (19)
N2—Ni1—N1—C2−179.49 (17)C6—C7—C8—N2−1.2 (4)
N4—Ni1—N1—C219.8 (4)C1—N3—C9—O28.3 (4)
N3—Ni1—N2—C8147.3 (3)Ni1—N3—C9—O2176.2 (2)
N1—Ni1—N2—C8171.2 (2)C1—N3—C9—C10−171.00 (19)
N4—Ni1—N2—C8−13.7 (2)Ni1—N3—C9—C10−3.1 (3)
N3—Ni1—N2—C4−27.6 (4)C14—N4—C10—C11−0.8 (4)
N1—Ni1—N2—C4−3.66 (15)Ni1—N4—C10—C11177.7 (2)
N4—Ni1—N2—C4171.40 (15)C14—N4—C10—C9174.9 (2)
N1—Ni1—N3—C9173.64 (18)Ni1—N4—C10—C9−6.6 (3)
N2—Ni1—N3—C9−162.4 (3)O2—C9—C10—N4−173.0 (2)
N4—Ni1—N3—C9−0.38 (18)N3—C9—C10—N46.4 (3)
N1—Ni1—N3—C1−17.93 (15)O2—C9—C10—C112.8 (4)
N2—Ni1—N3—C16.0 (4)N3—C9—C10—C11−177.9 (2)
N4—Ni1—N3—C1168.04 (15)N4—C10—C11—C12−0.1 (4)
N3—Ni1—N4—C14−177.7 (3)C9—C10—C11—C12−175.3 (3)
N1—Ni1—N4—C14157.5 (3)C10—C11—C12—C132.6 (5)
N2—Ni1—N4—C14−2.2 (3)C11—C12—C13—C14−4.2 (5)
N3—Ni1—N4—C104.10 (16)C10—N4—C14—C13−0.9 (4)
N1—Ni1—N4—C10−20.7 (4)Ni1—N4—C14—C13−179.0 (2)
N2—Ni1—N4—C10179.62 (16)C12—C13—C14—N43.4 (5)
C9—N3—C1—C1580.8 (2)N3—C1—C15—C20−161.45 (18)
Ni1—N3—C1—C15−87.42 (17)C2—C1—C15—C2081.9 (2)
C9—N3—C1—C2−158.3 (2)N3—C1—C15—C1620.7 (3)
Ni1—N3—C1—C233.5 (2)C2—C1—C15—C16−96.0 (2)
C3—N1—C2—C2174.7 (3)C20—C15—C16—C171.0 (3)
Ni1—N1—C2—C21−100.11 (18)C1—C15—C16—C17178.9 (2)
C3—N1—C2—C1−161.6 (2)C15—C16—C17—C18−0.5 (3)
Ni1—N1—C2—C123.6 (2)C16—C17—C18—C190.1 (4)
N3—C1—C2—N1−32.9 (2)C17—C18—C19—C20−0.3 (4)
C15—C1—C2—N188.7 (2)C18—C19—C20—C150.8 (4)
N3—C1—C2—C2192.29 (19)C16—C15—C20—C19−1.2 (3)
C15—C1—C2—C21−146.11 (17)C1—C15—C20—C19−179.2 (2)
C2—N1—C3—O11.8 (4)N1—C2—C21—C266.3 (3)
Ni1—N1—C3—O1176.5 (2)C1—C2—C21—C26−113.2 (3)
C2—N1—C3—C4179.4 (2)N1—C2—C21—C22−173.36 (19)
Ni1—N1—C3—C4−5.8 (3)C1—C2—C21—C2267.0 (2)
C8—N2—C4—C55.0 (3)C26—C21—C22—C231.1 (4)
Ni1—N2—C4—C5−179.3 (2)C2—C21—C22—C23−179.2 (2)
C8—N2—C4—C3−174.1 (2)C21—C22—C23—C24−1.2 (4)
Ni1—N2—C4—C31.6 (2)C22—C23—C24—C25−0.4 (5)
O1—C3—C4—C51.2 (4)C23—C24—C25—C262.0 (6)
N1—C3—C4—C5−176.6 (2)C22—C21—C26—C250.6 (4)
O1—C3—C4—N2−179.7 (2)C2—C21—C26—C25−179.2 (3)
N1—C3—C4—N22.4 (3)C24—C25—C26—C21−2.1 (5)
N2—C4—C5—C6−5.3 (4)C28—C27—O3—C27i91.6 (7)
C3—C4—C5—C6173.7 (3)

Symmetry codes: (i) −x+1, y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AV2001).

References

  • Barnes, D. J., Chapman, R. L. F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 51, 155–162.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Doukov, T. I., Iverson, T. M., Seravalli, J., Ragsdale, S. W. & Drennan, C. L. (2002). Science, 298, 567–572. [PubMed]
  • Fenton, R. R., Stephens, F. S. & Vagg, R. S. (1991). J. Coord. Chem.23, 291–311.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Halcrow, M. A., Christou, G., Halcrow, M. A. & Christou, G. (1994). Chem. Rev.94, 2421–2481.
  • Mulqi, M., Stephens, F. S. & Vagg, R. S. (1981). Inorg. Chim. Acta, 52, 73–77.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, L., Wei, R. L., Li, R., Zhou, X. G. & Zuo, J. L. (2007). J. Mol. Catal. A: Chem 266, 284–289.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography